Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.403

Micro-Brillouin Spectroscopy Applied to the Glass Transition of Anti-inflammatory Egonol  

Kim, Tae-Hyun (Department of Physics, Hallym University)
Ko, Jae-Hyeon (Department of Physics, Hallym University)
Kwon, Eun-Mi (Department of Chemistry and Institute of Natural Medicine, Hallym University)
Jun, Jong-Gab (Department of Chemistry and Institute of Natural Medicine, Hallym University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 403-408 More about this Journal
Abstract
The acoustic properties of anti-inflammatory egonol were investigated by using micro-Brillouin scattering spectroscopy, by use of a 6-pass tandem Fabry-Perot interferometer and an optical microscope specially modified for spectroscopic purposes. The measured Brillouin spectrum was composed of a central peak centered at zero and a Brillouin doublet arising from the longitudinal acoustic waves, i.e. propagating density fluctuations. For the first time, the glass transition of egonol was identified to be about $5^{\circ}C$ at which the Brillouin peak position and the half width showed abrupt changes. The substantial damping of acoustic phonons of egonol near the glass transition temperature indicated that the contribution of internal relaxation processes such as small-amplitude librations of side chains to the damping of acoustic phonons may be substantial depending on the internal structure of molecules.
Keywords
Fabry-Perot interferometer; Brillouin scattering; Acoustic waves; Egonol, Glass transition;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 J. M. Vaughan, The Fabry-Perot Interferometer (Adam Hilger, Bristol, England, 1989).
2 G. Hernandez, Fabry-Perot Interferometers (Cambridge University Press, New York, USA, 1986).
3 S. Kawai, T. Nakamura, and N. Sugiyama, “Synthesis of egonol,” Ber. dt. Chem. Ges. 72, 1146-1149 (1939).   DOI
4 M. Takanashi and Y. Takizawa, “New benzofurans related to egonol from immature seeds of Styrax obassia,” Phytochemistry 27, 1224-1226 (1988).   DOI   ScienceOn
5 D. H. Choi, J. W. Hwang, H. S. Lee, D. M. Yang, and J.-G. Jun, “Highly effective total synthesis of benzofuran natural product egonol,” Bull. Korean Chem. Soc. 29, 1594-1596 (2008).   과학기술학회마을   DOI   ScienceOn
6 A. Patkowski, J. Gapinski, G. Meier, and H. Kriegs, “Isotropic Brillouin spectra of liquids having an internal degree of freedom,” J. Chem. Phys. 126, 014508 (2007).   DOI   ScienceOn
7 J. R. Sandercock, Light Scattering in Solids III, M. Cardona and G. Guntherodt, ed. (Springer, Berlin, Germany, 1982), pp. 173.
8 J.-H. Ko, K.-S. Lee, Y. Ike, and S. Kojima, “Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering,” Chem. Phys. Lett. 465, 36-39 (2008).   DOI   ScienceOn
9 B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, “Brillouin light scattering study of glassy sorbitol,” Phil. Mag. 88, 3939-3946 (2008).   DOI   ScienceOn
10 J.-H. Ko and S. Kojima, “Brillouin scattering study on glass-forming ethanol,” J. Non-Crystal. Solids 307-310, 154-160 (2002).   DOI   ScienceOn
11 J.-H. Ko and S. Kojima, “Angular dispersion-type nonscanning Fabry-Perot interferometer applied to ethanol-water mixture,” J. Opt. Soc. Korea 13, 261-266 (2009).   과학기술학회마을   DOI   ScienceOn
12 J.-H. Ko and S. Kojima, “Comparison of acoustic behaviors between ethanol and partially-deuterated ethanol,” J. Korean Phys. Soc. 56, 409-412 (2010).   과학기술학회마을   DOI   ScienceOn
13 G. P. Johari and D. Pyke, “On the glassy and supercooled liquid states of a common medicament: aspirin,” Phys. Chem. Chem. Phys. 2, 5479-5484 (2000).   DOI
14 Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscopy,” Rev. Sci. Instrum. 63, 5552-5555 (1992).   DOI
15 D. H. Kim, J.-H. Ko, D. C. Feng, and S. Kojima, “Microheterogeneity and field cooling effects on PZN-4.5%PT single crystals probed by micro-Brillouin scattering,” Appl. Phys. Lett. 87, 072908 (2005).   DOI   ScienceOn
16 Y. Li, H. S. Lim, S. C. Ng, Z. K. Wang, M. H. Kuok, E. Vekris, V. Kitaev, F. C. Peiris, and G. A. Ozin, “Micro- Brillouin scattering from a single isolated nanosphere,” Appl. Phys. Lett. 88, 023112 (2006).   DOI   ScienceOn
17 S. P. Das, “Mode-couplling theory and the glass transition in supercooled liquids.” Rev. Mod. Phys. 76, 785-851 (2004).   DOI   ScienceOn
18 J. C. Dyre, “The glass transition and elastic models of glass-forming liquids,” Rev. Mod. Phys. 78, 953-972 (2006).   DOI   ScienceOn
19 R. S. Ward, “Lignans, neolignans and related compounds,” Nat. Prod. Rep. 16, 75-96 (1999).   DOI   ScienceOn
20 M.-R. Kim, H. T. Moon, D. G. Lee, and E.-R. Woo, “A new lignin glycoside from the stem bark of Styrax japonica S. et Z.,” Arch. Pharm. Res. 30, 425-430 (2007).   DOI   ScienceOn