Browse > Article
http://dx.doi.org/10.3807/JOSK.2003.7.3.188

Modal Characteristics of Photonic Crystal Fibers  

Lee, Yong-Jae (Department of Physics, Korea Advanced Institute of Science and Technology)
Song, Dae-Sung (Department of Physics, Korea Advanced Institute of Science and Technology)
Kim, Se-Heon (Department of Physics, Korea Advanced Institute of Science and Technology)
Huh, Jun (Department of Physics, Korea Advanced Institute of Science and Technology)
Lee, Yong-Hee (Department of Physics, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.7, no.3, 2003 , pp. 188-192 More about this Journal
Abstract
The modal characteristics of the photonic crystal fibers are analyzed using the reliable and efficient plane wave expansion method. The mode profile, effective index and group velocity dispersion are obtained by solving Maxwell's vector wave equations without any approximation. The zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths. Higher-order modes are also easily found as a by-product of the plane wave expansion method. This method can be used to quickly and accurately design various optical properties of photonic crystal fibers.
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Optical Society of America /
[ J.Kim;U.C.Paek;D.Y.Kim;Y.Chung ] / Optical Fiber Communication Conference '01
2 A. Ferrando, E. Silvestre, J.J. Miret, P. Andres., 'Vector description of higher order modes in photonic crystal fibers,' J. Opt. Soc. Am. A, vol. 17, pp. 1333 1339, 2000   DOI   ScienceOn
3 S. G. Jonson, and J. D. Joannopoulos, “Blockiterative frequency-domain methods for Maxwell's equations in a plane wave basis,” Opt. Express., vol. 8, pp. 173-190, 2000.   DOI
4 F. Brechet, J. Marcou, D. Pagnoux, and P. Ray, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Optical Fiber Technology, vol. 6, pp. 181-191, 2000.   DOI   ScienceOn
5 G. Ghosh, H. Yajima, “Pressure-dependent sellmeier coefficients and material dispersions for silica fiber glass,” IEEE J. of Lightwave Technol., vol. 16, pp. 2002-2005, 1998.   DOI   ScienceOn
6 J. Kim, U. C. Paek, D. Y. Kim, Y. Chung, in Optical Fiber Communication Conference '01, Optical Society of America, Anaheim, USA, pp. WDD-86, 2001.   DOI
7 H. Y. Ryu, S. H. Kim, S. H. Kwon, H. G. Park and Y. H. Lee, “Low threshold photonic crystal lasers from InGaAsP free-standing slab structures,” J. Opt. Soc. Korea, vol. 6, pp. 57-63, 2002.   과학기술학회마을   DOI   ScienceOn
8 D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photoniccrystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 80, pp. 3901-3903, 2002.   DOI   ScienceOn
9 A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett. ,vol. 24, pp. 276-278, 1999.   DOI
10 The periodic boundary conditions and Berenger PML(perfectly matched layer) boundary condition are used for the propagating direction(z) and the transversal plane(x-y), respectively. And to increase the computational accuracy, the number of grids per lattice constant is set to 30 and the maximum time step is taken as $2^{16}$.
11 A. Ferrando, E. Silvestre, J.J. Miret, P. Andres, “Nearly zero ultra-flatterned dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790-792, 2000.   DOI
12 T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P.J. Bennett, “Modeling large air fraction holey optical fibers,” IEEE J. Lightwave Technol. vol. 18, pp. 50-56, 2000.   DOI   ScienceOn
13 J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-Silica single-mode optical fiber with photonic crystal cladding”,Opt. Lett., vol. 21, pp. 1547- 1549, 1996.   DOI
14 K. Saitoh, M. Koshiba, “Full-vectorial imaginarydistance beam propagation method based on a finite element scheme, application to photonic crystal fibers,” IEEE J. of Quantum Elecron., vol. 38, pp. 927-933, 2002.   DOI   ScienceOn
15 J. Broeng, S. Barkou, S. Thomas, B. Anders, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett., vol. 25, pp. 96-98, 2000.   DOI
16 J. C. Knight, T. A. Birks, R. F. Cregan, P. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, pp. 1347-1348, 1998.   DOI   ScienceOn
17 T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” IEEE J. of Lightwave Technol., vol. 17, pp. 1093-1102, 1999.   DOI   ScienceOn
18 J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals, (Princeton university press, Princeton, N. J., USA, 1995).
19 P.E. Gill, W. Murray, and M. H. Wright, Practical Optimization, (Academic, London, UK, 1981)
20 O. J. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, pp. 1819-1821, 1999.   DOI   ScienceOn