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The modal characteristics of the photonic crystal fibers are analyzed using the reliable and
efficient plane wave expansion method. The mode profile, effective index and group velocity dis-
persion are obtained by solving Maxwell’s vector wave equations without any approximation. The
zero dispersion condition of a photonic crystal fiber is derived over a wide range of wavelengths.
Higher-order modes are also easily found as a by-product of the plane wave expansion method. This
method can be used to quickly and accurately design various optical properties of photonic crystal

fibers.
OCIS codes : 060.0060, 060.2280.

1. INTRODUCTION

Recently, various photonic crystal based devices
have been constructed [1,2]. Among these devices,
photonic crystal fibers (PCFs) have many interesting
characteristics. Unlike conventional step index fibers,
PCFs can support a single mode over a wide range
of wavelengths [3] and they have a large effective core
area retaining the single mode [4]. PCFs based on air
hole arrays have received particular attention on ac-
count of their manufacturability. Recently, the guid-
ing property of PCFs has been successfully applied to
single-transverse-mode vertical cavity surface emitting
lasers [5].

Various theoretical methods have been employed to
understand the characteristics of PCFs. In an early
theoretical study, Ferrando et al. modeled PCFs us-
ing the full vector technique widely used for conven-
tional fibers [6]. This model was subsequently simpli-
fied into scalar and vector models that achieved excel-
lent calculation efficiency by using Hermite-Gaussian
functions [7,8]. Although this simplified method gives
greatly improved calculation speed, it cannot cor-
rectly handle structures with abrupt index variations
in consequence of the approximation on the Maxwell
equations. The finite element method (FEM) has
also been used to model PCFs [9], but FEM cal-
culations require huge computation power to obtain
accurate results. The finite-difference time-domain
(FDTD) method is another technique that can accu-
rately model PCFs, but FDTD calculations require
prohibitively long computation times. Therefore, a

fast and accurate method for modeling PCFs would
be of great benefit.

II. EFFICIENT METHODOLOGY AND
RESULTS

To save the computation power without sacrificing
accuracy, we use the plane wave expansion method
with the electromagnetic energy functional to model
PCFs. This method has been widely used to analyze
the band structures and modal characteristics of pho-
tonic crystals [10-12]. The wave equation employed
here is basically the vector eigenvalue equation of a
Maxwell Hermitian operator :

1 = w\2
v x (JF—)V x H(v’"’)) = <Z) A7) (1)

where £(7) is the position-dependent dielectric con-
stant, w is an eigen frequency, and c is the speed of
light. We assume the permeability 4 to be unity. Note
that no approximation is assumed in this full vector
wave equation. For a given Bloch wavevector 5 , the
magnetic field H(7) is decomposed into plane waves
having some reciprocal-lattice vectors ém,

N
H(7) = @D Z Byt (Cm™) (2)

m=1

Then the Eq. (1) becomes a matrix eigenvalue equa-
tion.
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We employ the conjugate gradient iterative mini- by the minimization process of the energy functional
mization method for 3-D photonic crystal fiber struc- defined as,

ture with a large refractive index difference [13]. Fol-
lowing this method, the eigenvalue of the fundamental

1 J drHy(7) - ©Hg(7)
mode and its mode profile are obtained simultaneously =

2 [ @A - Hy(r)

Ey(Hpy) (4)

N
where © = (V—!—iﬁ)x [;(%(V + 15)] x and ﬁg(f’) = mX::l R €(Gm ),

|

To treat waveguiding structures along the z direc- neighboring supercells is negligible.
tion, we set the wavevector to have the form § =
(0,0,3;). Once a fundamental mode is obtained, the
higher-band eigenstates can be derived in ascending
order by invoking the orthogonality condition. And
to obtain the localized guided mode in the periodic
structure, the supercell method is used [11]. The size
of the supercell is chosen to be sufficiently greater than

the mode size, then the coupling effect between the

As an example, we calculate the electric field pro-
file of the fundamental mode of a hexagonal photonic
crystal fiber with lattice constant A = 2.3 ym and
refractive index n = 1.46. To ensure sufficient res-
olution we take the sampling space to be 2% grids
per lattice constant. Thus when supercell size is
(NzA) x (NyA) x (N,A), the number of planewaves
are (N x 2%)(Ny x 25)(N, x 2°). Here, N, N, have
to be chosen by considering the mode size and N,
determines the range of the wavevector along the z
direction, i.e. 8, =0 ~ w/(N,A). It takes about 20
seconds to calculate one fundamental eigenstate using
a 1.0 GHz personal computer (AMD CPU) when we
take the supercell size to be 7TA x 7A x 0.1A. Fig.
1(a) shows the fundamental mode calculated by the
plane wave expansion method with air holes of radius

¢ © o 0 o O 0

°c e e 000 r = 0.1A at A = 0.65 um Fig. 1(b) shows that as

(a) the wavelength becomes longer, the effective size of

the mode is enlarged and the field penetrates into the

air hole air holes resulting in a decrease of the effective in-

dex. However, at longer wavelengths, the penetration

of the modal field becomes asymptotically saturated.

g A=1.85um This expansion of the mode profile is partly responsi-

Lé /\\‘/\ ble for the spectrally wide single-mode nature of the
< 4=1.00um VT photonic crystal fiber.

&A\,Q The dispersion relation can be easily obtained by

S TP S S S varying the propagation wavevector along the z di-

Distance from core center(jum) rection. In general, the effective index defined as

(b) B/k is one of the most important physical param-

eters for wave guiding structures. Fig. 2 shows

FIG. 1. Fundamental mode of a photonic crystal fiber the effective indices of PCFs with different air-hole

(r = 0.1A, A = 2.3 um, n = 1.46) (a) Mode profile at A sizes. To confirm the validity of the planewave expan-
= (.65 pm (amplitude contours, spaced by 10% of maxi- sion method, we also performed calculations based on
mum value) (b) Cross-sectional field distributions along I’ three-dimensional(3-D) FDTD method [14]. The re-
- X direction shown in at three different wavelengths, A = sults obtained from the planewave expansion method

0.65, 1.00, 1.55 pm. are in good agreement with these 3-D FDTD results.
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FIG. 2. Effective indices of photonic crystal fibers with
different air holes (A = 2.3 pm, n = 1.46). The solid lines
are the results of the plane wave expansion method and
the open circles are obtained from the FDTD calculation.

These results also agree well with those previously ob-
tained using the FEM [9)].

The chromatic group velocity dispersion (GVD) is
defined as the sum of the material dispersion Dy, and

the waveguide dispersion D,,:
A d2n dzneff
D_Dm+Dw‘_E<W+ X ) (5)

The waveguide dispersion is easily obtained from
the effective index, n.ss, and the material dispersion
can be calculated from the Sellmeier equation [15].
The resulting total group velocity dispersion for the
fundamental mode of a silica photonic crystal fiber is
plotted in Fig. 3, where the material dispersion of pure
silica that has zero-crossing near 1.3 pm. According

100

-50

GVD(ps/ns/km)

-100

-150

L L -150
1.2 1.4 1.6

M(pm)

FIG. 3. Group velocity dispersion (GVD) for various
air hole radii (solid lines). GVD is nearly zero over the
range 1.2 ~ 1.6 ym when the air hole radius is 0.135 A.
Dash-dotted lines represent the waveguide dispersion D.,
for each air hole size. Dotted line represents the material
dispersion; it becomes zero ~ 1.3 um.(We selected super-
cell size as 12A x 12A to certify the calculation accuracy
sufficiently.)
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FIG. 4. The group velocity dispersion variation along
to supercell sizes for the air hole radius r = 0.135A

to Fig. 3, when the size of the air hole is small, the
waveguide dispersion curves have negative slopes with
zero-crossings in the range 1.0 ~ 1.5 pm. In partic-
ular, when the radius of the air hole is 0.135 A , the
total GVD becomes very small over a wide spectral
range (1.2 ~ 1.6 pm). Similar results have been ob-
tained previously using the FEM [16] and full vector
technique [17]. However, if the size of the air hole
becomes greater than 0.135 A, the waveguide disper-
sion becomes positive and the zero-crossing disappears
within the interested wavelength range(1.3 ~ 1.6 um)
[18].

Next, we investigate the effect of the supercell size.
Fig. 4 represents the GVD variation for a PCF with
r = 0.135A . One can see that the GVD does not
depend strongly on the size of the supercell in the
short wavelength region(<1.1 gm). In the long wave-
length region, the result shows stronger dependence
on the supercell size. However, the variation of GVD
remains small(< 2 ps/nm/km) when the supercell size
is larger than 12A x 12A.
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FIG. 5. The effective index of the higher-order modes
(A = 2.3 pym, r = 0.45A)
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FIG. 6. The electric field distributions of higher-order modes

1.330) (C) TM01(neff = 1.329) (d) HE31(neff = 1.243).

It is worth pointing out that the plane wave expan-
sion method generates higher-order modes accurately
and quickly compared to other methods. For exam-
ple, Figs. 5 and 6 show the effective index and electric
field of typical higher-order modes near A =1.55 pm,
respectively, for photonic crystal fibers of 7 = 0.45A .
It is interesting to observe the presence of degenerate
modes similar to those of the conventional fiber [19].
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FIG. 7. The group velocity dispersion of the

higher-order modes.

at A = 1.55 pum. (a) TEo1(nesr = 1.338) (b) HE21(nesy =

For example, doubly degenerate states such as the
HE (x,y) modes and HEy; (even,odd) modes are ob-
served. Following the methodology described above,
the GVD of the higher modes can also be simply es-
timated (Fig. 7). Note that the position of the max-
imum GVD is blue-shifted because the influence of
the air hole increases for the higher-order modes. It
is also worth pointing out that the LPg2 and LPgy
groups have zero-crossing points within the spectral
range of interest. In fact, the zero-crossing position
can be adjusted by controlling the air hole size and
material dispersion.

III. CONCLUSION

We calculated the modal characteristics of pho-
tonic crystal fibers using the plane wave expansion
method. The plane wave expansion method is more
than two orders of magnitude faster than the 3-D
FDTD method, yet its results agree well with those
of the FDTD method and the FEM method. The
speed and accuracy of the proposed method should
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see it widely used for the design of general high-index-
contrast waveguide structures.
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