• Title/Summary/Keyword: properties

Search Result 91,420, Processing Time 0.112 seconds

Evaluation of Physical Properties of Nanoemulsion Ampoule as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type (맞춤형화장품 베이스로서 나노에멀젼 앰플의 물성 평가 및 피부타입에 따른 만족도 평가)

  • Se-Yeon, Kim;Hyung Guen, An;Ja Young, Kim;Kyung-Sup, Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.343-355
    • /
    • 2022
  • Customized cosmetics are continuously mentioned as cosmetics in response to changes in the social environment and trends that emphasize individuality. Therefore, in this study, four types of nanoemulsion ampoules corresponding to skin types were prepared by different ratios of nanoemulsion formulation and ampoule formulation, and the applicability as a customized cosmetic base was checked. Particle size, polydispersity index, zeta potential, and viscosity according to time for 90 d were measured for four nanoemulsion ampoules with different volatile residues, and turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. Finally, human usability satisfaction was evaluated. As a result, it was confirmed that four kinds of nanoemulsion ampoules had a higher amount of volatile residue in the dry skin test product than in the oily skin test product. The pH was in the range of 6.41 to 6.88, and the particle size was in the range of 170 to 174 nm, and the change after 90 d was within 1.2% of the maximum, and there was no specificity in particle size stability. It was confirmed that the polydispersity index was almost constant, and showed a particle size distribution close to monodispersity by showing a change within a value smaller than 0.21 in all test products. The zeta potential was initially -63 mV or more for all four types of test products, and although it showed a slight decrease with time, there was little change to the extent of a maximum decrease of 2.5%. Viscosity was initially in the range of 4,100 to 5,100 cps and showed a decreasing trend with time, showing a maximum decrease of 37.7%. In the turbiscan measurement, the turbiscan stability index, a measure of stability, was all below 1.0, indicating dispersion stability. In the usability satisfaction evaluation (6 points) of 4 nanoemulsion ampoules corresponding to skin type, oily skin product (5.42 ± 0.67 points) > neutral oily skin product (5.36 ± 0.67 points) > neutral dry skin product (5.15 ± 0.69 point) > dry skin product (4.75 ± 0.75 points) in the order of evaluation. Four types of nanoemulsion ampoules are physically stable and have confirmed their applicability as a customized cosmetic base according to skin type, and are expected to expand in various ways.

The Radioprotection Effect of Dioscorea Quinqueloba Extracts on the Prostate and Heart in Male Rats (수컷 쥐 전립선과 심장에 대한 단풍마 추출물의 방사선 방호효과 연구)

  • Jae-Gyeong, Choi;Chang-Ju, Kim;Geun-Woo, Jeong;Sang-Hyun, Jeong;Sung-Hyun, Joo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.779-786
    • /
    • 2022
  • This study is designed to examine the effects of Dioscorea Quinqueloba extract as a natural radiation protection agent on the prostate and heart of male rats. Dioscorea Quinqueloba extract is well known to prevent the male-specific disease and heart disease. In this study, the Gamma-ray 10 Gy was irradiated in whole body of male rat to identify radioprotective effect by Dioscorea Quinqueloba extract. After irradiation, tissue change, SOD (Superoxide Dismutase) activity changes and hematological changes were observed. DQ+IR group showed higher lymphocyte, white blood cell, platelet levels than the IR group. In the NC and DQ groups, the number of prostate gland cells and the gap between cells were relatively narrow. But in the IR group, the cells died significantly and the gap widened. In the DQ+IR group, the gap between cells increased similarly to the IR group, but the number of dead cells was noticeably smaller. In the NC and DQ groups, the cardiovascular and myocardium are clearly separated, and cell nuclei are in good condition. But in the IR group, the cardiovascular and myocardium boundaries were disrupted, and the number of dead cell nuclei was high. In the DQ+IR group, although the boundaries were widened, but not disrupted and the number of dead cell nuclei was high. Therefore, Dioscorea Quinqueloba extract is judged to have radioprotective properties for the prostate and cardiovascular.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

Quality Changes as Affected by Storage Temperature and Polyamide Film Packaging in Paprika (Capsicum annuum L.) (파프리카 저장 온도 변화와 폴리아미드 필름 포장 적용에 따른 품질 변화)

  • Erdene, Byambaa Bayar;Lee, Jung-Soo;Park, Me Hea;Choi, Ji Won;Eum, Hyang Lan;Malka, Siva Kumar;Yun, Yeoeun;Kim, Chae-Hee;Kim, Ho Cheol;Lee, Jinwook;Park, Ki Young;Bae, Jong Hyang;Lee, YounSuk;Jeong, Cheon Soon;Park, Jong-Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.115-125
    • /
    • 2022
  • The purpose of this study was to examine the effect of packaging on quality maintenance of paprika (Capsicum annuum L. cv. Nagano RZ) stored at three different temperatures. In Korea, paprika is stored and distributed under ambient conditions. To ensure the freshness maintenance, determining optimal storage temperature is necessary. Paprika were unpacked (control) or packed with polyamide film and stored at 5℃, 10℃ and 20℃ for 35 days. Quality characteristics such as weight loss and appearance were examined. Paprika packed with polyamide film showed less quality changes compared to unpacked paprika under all the storage temperatures. The commercial properties tended to decrease rapidly during storage at 20℃ regardless of packing. The degree of weight loss was significantly lower in packed paprika compared to unpacked paprika. It was found that soluble solids, pigments, hardness, etc. were complexly affected by storage temperature and film packaging. For paprika, the storage temperature of 5℃ or 10℃ was effective in maintaining freshness; paprika packed in polyamide film packing maintained greater freshness than unpacked paprika. Our results showed that, packaging is required to preserve the freshness and to improve the marketability of paprika in the domestic market. It seems that it is necessary to continuously search for an effective packaging method.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.

Evaluating the Capping Effects of Dredged Materials on the Contaminated Sediment for Remediation and Restoration of the West Sea-Byeong Dumping Site (서해병 폐기물 배출해역 오염퇴적물의 정화·복원을 위한 준설토 피복 효과 평가)

  • Kang, Dong Won;Lee, Kwang Sup;Kim, Young Ryun;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.212-223
    • /
    • 2022
  • For the remediation and restoration of contaminated sediment at the West Sea-Byeong dumping site, dredged materials was dumped in 2013, 2014, 2016, and 2017. The physicochemical properties and benthic fauna in surface sediments of the capping area (5 stations) and natural recovery area (2 stations) were analyzed annually from 2014 to 2020 to evaluate the capping effect of the dredged materials. The natural recovery area had a finer sediment with a mean particle size of 5.91-7.64 Φ, while the sediment in the capping area consisted of coarse-grained particles with a mean particle size of 1.47-3.01 Φ owing to the capping effect of dredged materials. Considering that the contents of organic matters (COD, TOC, and TN) and heavy metals in the capping area are approximately 50 % lower (p<0.05) than that in the natural recovery area, it is judged that there is a capping effect of dredged materials. As a result of analyzing macrobenthic assemblages, the number of species and ecological indices of the capping area were significantly lower than that of the natural recovery area (p<0.05). The number of species and ecological indices at the capping area were increased for the first four years after the capping in 2013 and 2014 and then tended to decrease thereafter. It is presumed that opportunistic species, which have rapid growth and short lifetime, appeared dominantly during the initial phase of capping, and the additory capping in 2016 and 2017 caused re-disturbance in the habitat environment. In the natural recovery and capping areas, Azti's Marine Biotic Index (AMBI) was evaluated as a fine healthy status because it maintained the level of 2nd grades (Good), whereas Benthic Pollution Index (BPI) remained at the 1st and 2nd grade. Therefore, capping of dredged materials for remediation of contaminated sediment in the dumping site has the effect of reducing the pollution level. However, in terms of the benthic ecosystem, it is recommended that the recovery trend should be monitored long-term. Additionally, it is necessary to introduce an adaptive management strategy when expanding the project to remediate the contaminated sediment at the dumping area in the future.

Comparison of the Bone Union Rates Using a Local Autobone and Bone Graft Substitute Mixed Graft in Lumbar Posterolateral Fusion (요추부 후측방 유합술 시 국소 자가골 및 골 이식 대체재 혼합 이식에 의한 골유합률의 비교)

  • Ko, Young-Chul;Hong, Seong-Hwak;Park, Man-Jun;Huh, Jung-Wook;Park, Joon-Hyung;Lee, Woo-Myung
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.169-177
    • /
    • 2020
  • Purpose: To assess the effectiveness of mixed grafts in lumbar posterolateral fusion (PLF) by comparing the bone union rates of an autobone with a bone substitute mixed graft. Materials and Methods: The patients were followed-up for at least two years after PLF and divided into four groups according to the mixed graft retrospectively. Group I was 48 cases using a femoral head allobone. Group II was 38 cases using β-tricalcium phosphate. Group III was 92 cases using biphasic calcium phosphate. Group IV was 38 cases using biphasic calcium phosphate and autologous bone marrow. Union was evaluated by the work up simple radiographs after two years from PLF. Union was defined if the radiographs demonstrated a bilateral continuity in the fusion mass between the cephalad and caudal transverse processes with less than 2° of angular motion and no translation between the vertebrae at the level of fusion on the lateral flexion-extension radiographs. Results: According to simple radiographs after two years from PLF, the rate of union was highest in Group IV using local autobone, biphasic calcium phosphate and autologous bone marrow mixed graft. Conclusion: Biphasic calcium phosphate is an osteoconductive bone substitute that increases the bio-absorbability and mechanical strength. Autologous bone marrow has osteoinductive and osteogenic properties. These features can increase the rate of bone union. Therefore, a local autobone, biphasic calcium phosphate and autologous bone marrow mixed graft can be considered an effective bone graft substitute for lumbar PLF instead of an autobone graft.

Evaluation of water drainage according to hydraulic properties of filling material of sand dam in Mullori, Chuncheon (춘천 물로리 지역 샌드댐 채움재 수리특성에 따른 배수량 평가)

  • Chung, Il-Moon;Lee, Jeongwoo;Kim, Min-Gyu;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.923-929
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area of water welfare where local water supply is not supplied, and it is supplying water to the villages with small water supply facilities using lateral flow and groundwater as water sources. This is an area with poor water supply conditions, such as relying on water trucks due to water shortages during the recent severe drought. Therefore, in order to solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed along the valley, and this facility has been operating since May 2022. In this study, repeated simulations were performed according to the hydraulic conductivity of the filler material and the storage coefficient value for the inflow condition for about two years from mid-March 2020 to mid-March 2022. For each case, the amount of discharge through the perforated drain pipe was calculated. Overall, as the hydraulic conductivity increased, the amount of discharge and its ratio increased. However, when the hydraulic conductivity of the second floor was relatively low, the amount of discharge increased and then decreased as the hydraulic conductivity of the third floor increased. This is considered to be due to the fact that the water level was kept low due to the rapid drainage compared to the net inflow into the third floor because the water permeability of the third floor and the drainage coefficient of the drain pipe were large. As a result of simulating the flow of the open channel in the upper part of the sand dam as a hypothetical groundwater layer with very high hydraulic conductivity, the decrease in discharge rate was slower than the increase in the hydraulic conductivity of the hypothetical layer, but it was clearly shown that the discharge volume decreased relatively as the hydraulic conductivity of the virtual layer increased.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.