• Title/Summary/Keyword: pronation

Search Result 149, Processing Time 0.034 seconds

Three-dimensional kinematic motion analysis of door handling task in people with mild and moderate stroke

  • Lee, Jung Ah;Kim, Eun Joo;Hwang, Pil Woo;Park, Han Ram;Bae, Jae Hyuk;Kim, Jae Nam
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • Objective: This study aimed to quantify one of the useful upper extremity movements to evaluate motor control abilities between the groups of people with mild and moderate arm impairments performing a door handling task. Design: Cross-sectional study. Methods: Twenty-one healthy participants and twenty-one persons with chronic stroke (9 mild stroke and 12 moderate stroke) were recruited for this study. Stroke participants were divided into 2 groups based on Fugle-Meyer Assessment scores of 58-65 (mild arm) and 38-57 (moderate arm). All they performed door handling task including the pronation and supination phases 3 times. We measured some movement factors which were reaction time, movement time, hand of peak velocity, hand of movement units to perform door handling task using the three-dimensional motion analysis. Results: The majority of kinematic variables showed significant differences among study groups (p<0.05). The reaction time, total and phase of movement time, hand of peak velocity, the number of movement units discriminated between healthy participants and persons with moderate upper limb stroke (p<0.05). In addition, reaction time, total and phase of movement time, the number of movement units discriminated between those with moderate and mild upper limbs of stroke patients (p<0.05). Conclusions: Three-dimensional kinematic motion analysis in this study was a useful tool for assessing the upper extremity function in different subgroups of people with stroke during the door handling task. These kinematic variables may help clinicians understand the arm movements in door handling task and consist of discriminative therapeutic interventions for stroke patients on upper extremity rehabilitation.

The Effect of Trunk Extension Strengthening Exercise on Muscle Performance of Upper Limb in Adolescent Baseball Player (체간 신전근 강화훈련이 청소년기 야구선수의 상지 근수행력에 미치는 영향)

  • Choi, Joe-Haeng;Park, Jong-Hang
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.1
    • /
    • pp.61-68
    • /
    • 2002
  • The purpose of this dissertation was to analyze the effect of trunk extension strengthening exercise on muscle performance of the upper limb in adolescent baseball player. The twenty people were studied : experimental group(10), comparative group(10). The experimental group has done trunk extension strengthening exercise for 8 weeks. The study analyzes isometric maximal strength of shoulder internal rotation. shoulder external rotation, elbow flexion, elbow extension, forearm pronation, forearm supination and ball speed. All of subjects were tested for 3 times ; pre, mid, post. The results were as follows; 1. Maximal isometric strength of upper limb, during trunk extension strengthening exercise in experimental group, shoulder internal rotation and external rotation showed it has slightly increased and comparative group showed it has no change, but not significant elbow flexion and extension significantly(p<0.05) increased after exercise either for 4 or 8 weeks compared with that of control group. Forearm pronation showed not significantly changed in both group, but significantly different between group either for 4 or 8 weeks. Forearm supination, significantly((p<0.05) increased after 8 weeks in experimental group. 2. Ball speed showed slightly increased but not significantly in experimental group. These results it may expect improvement of upper limb muscle performance of upper limb in adolescent baseball player. However, in case of shoulder a point of view of bunk extension strengthening exercise of this study hasn't a significant influence. More experimental studies are needs, hereafter which will use more experimental subjects and various methods of exercise and new application of treatment term to define significant change.

  • PDF

The Biomechanical Evaluation of New Walking-shoes (신 워킹 전문화의 생체역학적 기능성 평가)

  • Kim, Eui-Hwan;Chung, Chae-Wook;Lim, Jung
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.193-205
    • /
    • 2006
  • This study was to analysis the kinematic and kinetic differences between new walking shoe(NWS : RYN) and general walking shoe(GWS). The subjects for this study were 10 male adults who had the walking pattern of rearfoot shrike with normal foot. The movement of one lower leg was measured using plantar pressure and Vicon Motion Analysis Program(6 MX13 and 2 MX40 cameras : 100 f / s) while the subjects walked at the velocity(1.5m/s. on 2m).. The results of this study was as follows : 1. The NWS was better than the GWS that caused injuries such as adduction, abduction and pronation are reduced While walking on a perpendicular surface, the landing angle and the knees angles were extensive which makes walking more safe which reduces anxiety and uneasiness. 2. The bottom of the NWS were now made into a more circular arch which supports the weight of the body and reduces the irregular angles when wearing GWS. This arch made the supporting area more wide which made the upholding the trunk of the body more effective. The whole bottom of the foot that supports the weight is more flexible in addition, increases the safeness of walking patterns and the momentum of the body. 3. The moment the heel of the foot of the NWS touch the ground, the range of the pressure were partially notable and the range of the pressure on the upper part of the thigh were dispersed The injuries that occurred while walking. primary factors when a shock related injuries are reduced Judgements of the impacts of the knees and the spinal column dispersing could be made.

The Kinematical Comparative Analysis Between Spring Shoe and General Shoe (기능성 스프링신발과 일반 운동화의 운동학적 비교분석)

  • Lee, Chong-Hoon;Sung, Bong-Ju;Song, Joo-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.99-109
    • /
    • 2007
  • The purpose of the study is to examine the effect of the spring shoe through the comparison of spring shoe to general shoe. For this, 12 healthy females in the age from 20 to 30 years participated in the E.M.G. experiment with testing kinematic variables. Results indicated that there was significant differences in angle of ankel between the general and spring shoe. Specifically, the spring shoe showed a bigger angle of take on and a smaller angle of take off in walking than the general shoe. This mesns that the spring shoe does not have a significant effect to produce efficient and smooth walking. In addition, the spring shoes revealed a bigger rear-foot angle than the general shoe in the evaluation of rear-foot control function. This means that the rear-foot control function of the spring shoe is low compared to trhe general shoe. Meanwhile, there is no significant differences in angle of knee and angle of Achilles tendon between both shoes. In an analysis of E.M.G., the significant differences were found in gastrocnemius muscle, anterior tibial musculi, musculi rectus femoris, biceps muscle of thigh between both the general and spring shoe groups by the section. In the case of gastrocnemius muscle, the spring shoe showed a low muscle production of anterior tibial musculi than the general shoe. This is a result from structural nature of the sole of a foot of the spring shoe. The spring shoe performs a rolling movement through slightly large pronation toward front-foot from rear-foot in supprt time before taking-off of toe and the power for this movement is mainly produced from musculi rectus femoris.

A Critical Review of Foot Orthoses in Normal and Diseased Foot (정상의 발과 병적인 발에서 발보조기 연구의 비판적 고찰)

  • Kim, Seung-Jae;Kim, Jang-Hwan;Tack, Gye-Rae;Bae, Sang-Woo;Park, Yeong-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this study was to critically review biomechanical studies on foot orthoses (FO) in normal and diseased foot and provide beneficial information obtained from researches until now and future researching focus. The search was performed by Medline and Embase database including studies published in English from January 1980 to April 2007. The searching terms were foot orthoses, foot orthotics, insoles and shoe insert. 57 studies including 54 journal articles and 3 abstracts were finally selected under the conditions of having clinical trials, FO, control condition, movement, scientific measuring system. The reviewed studies were divided into 10 categories according to subject characteristics; healthy normal, excessive pronation or flexible flat foot, rheumatoid arthritis, diabetes, medial knee osteoarthritis, forefoot varus, plantar fasciitis, patellofemoral syndrome, cavus foot and finite element model. In summary, first, soft and semirigid FOs with some degree of cushioning showed much higher comfort and efficacy than rigid FO. Second, no big differences between prefabricated and custom FO were shown. Third, the full length's FO was preferable to the half length's FO or simple arch supports. Fourth, the wearing of FO combining medial arch supports and metatarsal dome made positive roles to enhance comfort and functionality and redistribute plantar pressure under the foot. Fifth, for patients with knee-related diseases lateral wedges were preferable. Sixth, measuring systems were properly applied according to the types of foot diseases.

Study on Oneself Developed to Apparatus Position of Measurement of BMD in the Distal Radius (자체 개발한 보조기구로 원위 요골의 골밀도 측정 자세 연구)

  • Han, Man-Seok;Song, Jae-Yong;Lee, Hyun-Kuk;Yu, Se-Jong;Kim, Yong-Kyun
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.419-426
    • /
    • 2009
  • Purpose : The aim of this study was to evaluate the difference of bone mineral density according to distal radius rotation and to develop the supporting tool to measure rotation angles. Materials and Methods : CT scanning and the measurement of BMD by DXA of the appropriate position of the forearm were performed on 20 males. Twenty healthy volunteers without any history of operations, anomalies, or trauma were enrolled. The CT scan was used to evaluate the cross sectional structure and the rotation angle on the horizontal plane of the distal radius. The rotational angle was measured by the m-view program on the PACS monitor. The DXA was used in 20 dried radii of cadaveric specimens in pronation and supination with five and ten degrees, respectively, including a neutral position (zero degrees) to evaluate the changes of BMD according to the rotation. Results : The mean rotation angle of the distal radius on CT was 7.4 degrees of supination in 16 cases (80%), 3.3 degrees of pronation in three cases (15%), and zero degree of neutral in one case (9%), respectively. The total average rotation angle in 20 people was 5.4 degrees of supination. In the cadaveric study, the BMD of the distal radius was different according to the rotational angles. The lowest BMD was obtained at 3.3 degrees of supination. Conclusion : In the case of the measurement of BMD in the distal radius with a neutral position, the rotational angle of the distal radius is close to supination. Pronation is needed for the constant measurement of BMD in the distal radius with the rotation angle measuring at the lowest BMD and about five degrees of pronation of the distal radius is recommended.

  • PDF

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

Functional Separation of Myoelectric Signal of Human Arm Movements Using Time Series Analysis (시계열 해석을 이용한 팔운동 근전신호의 기능분리)

  • 홍성우;남문현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1051-1059
    • /
    • 1992
  • In this paper, two general methods using time-series analysis in the functional separation of the myoelectric signal of human arm movements are developed. Autocorrelation, covariance method and sequential least squares algorithm were used to determine the model parameters and the order of signal model to describe six arm movement patterns` the forearm flexion and extension, the wrist pronation and supination, rotation-in and rotation-out. The confidence interval to classify the functions of arm movement was defined by the mean and standard deviation of total squared error. With the error signals of autoregressive(AR) model, the result showed that the highest success rate was obtained in the case of 4th order, and success rate was decreased with increase of order. Autocorrelation was the method of choice for better success rate. This technique might be applied to biomedical and rehabilitation engineering.

  • PDF

Flow Visualization on the Bio-Mimic Model of Dragonfly (잠자리 모사 모형 주변의 유동가시화 실험)

  • Yun, Jun-Yong;Uhm, Sang-Jin;Ji, Young-Moo;Park, Jun-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • A flow visualization has been conducted to investigate unsteady flight characteristics of a model of dragonfly. The mechanism of lift generation by flapping wings is analyzed using smoke-wire and high speed camera. The experimental results of flow visualization show a discernible sequential dynamics that three mechanisms and high incidence angle of the wings are responsible for the lift generation. The leading edge vortex by the rapid acceleration of leading edge of the wing during initial stage of stroke causes a strong lift enhancement. Delayed stall during the stroke, fast supination and pronation of the wing near the end of each stroke are also responsible for the lift generation.

Prosthetic arm control using muscle signal (생체 근육 신호를 이용한 보철용 팔의 제어)

  • Yoo J.M.;Kim Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1944-1947
    • /
    • 2005
  • In this paper, the control of a prosthetic arm using the flex sensor signal is described. The flex sensors are attached to the biceps and triceps brchii muscle. The signals are passed a differential amplifier and noise filter. And then the signals are converted to digital data by PCI 6036E ADC. From the data, position and velocity of arm joint are obtained. Also motion of the forearm - flexion and extension, the pronation and supination are abstracted from the data by proposed algorithm. A two D.O.F arm with RC servo-motor is designed for experiment. The arm length is 200 mm, weight is 4.5 N. The rotation angle of elbow joint is $120^{\circ}$. Also the rotation angle of the wrist is $180^{\circ}$. Through the experiment, we verified the possibility of the prosthetic arm control using the flex sensor signal. We will try to improve the control accuracy of the prosthetic arm continuously.

  • PDF