• Title/Summary/Keyword: projective module and multiplication modules

Search Result 7, Processing Time 0.016 seconds

Multiplication Modules and characteristic submodules

  • Park, Young-Soo;Chol, Chang-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.321-328
    • /
    • 1995
  • In this note all are commutative rings with identity and all modules are unital. Let R be a ring. An R-module M is called a multiplication module if for every submodule N of M there esists an ideal I of R such that N = IM. Clearly the ring R is a multiplication module as a module over itself. Also, it is well known that invertible and more generally profective ideals of R are multiplication R-modules (see [11, Theorem 1]).

  • PDF

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

Pointwise Projective Modules and Some Related Modules

  • NAOUM-ADIL, GHASAN;JAMIL-ZEANA, ZAKI
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.471-480
    • /
    • 2003
  • Let $\mathcal{R}$ be a commutative ring with 1, and Let M be a (left) R-module. M is said to be pointwise projective if for each epimorphism ${\alpha}:\mathcal{A}{\rightarrow}\mathcal{B}$, where A and $\mathcal{B}$ are any $\mathcal{R}$-modules, and for each homomorphism ${\beta}:\mathcal{M}{\rightarrow}\mathcal{B}$, then for every $m{\in}\mathcal{M}$, there exists a homomorphism ${\varphi}:\mathcal{M}{\rightarrow}\mathcal{A}$, which may depend on m, such that ${\alpha}{\circ}{\varphi}(m)={\beta}(m)$. Our mean concern in this paper is to study the relations between pointwise projectivemodules with cancellation modules and its geeralization.

  • PDF

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

SOME ASPECTS OF ZARISKI TOPOLOGY FOR MULTIPLICATION MODULES AND THEIR ATTACHED FRAMES AND QUANTALES

  • Castro, Jaime;Rios, Jose;Tapia, Gustavo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1285-1307
    • /
    • 2019
  • For a multiplication R-module M we consider the Zariski topology in the set Spec (M) of prime submodules of M. We investigate the relationship between the algebraic properties of the submodules of M and the topological properties of some subspaces of Spec (M). We also consider some topological aspects of certain frames. We prove that if R is a commutative ring and M is a multiplication R-module, then the lattice Semp (M/N) of semiprime submodules of M/N is a spatial frame for every submodule N of M. When M is a quasi projective module, we obtain that the interval ${\uparrow}(N)^{Semp}(M)=\{P{\in}Semp(M){\mid}N{\subseteq}P\}$ and the lattice Semp (M/N) are isomorphic as frames. Finally, we obtain results about quantales and the classical Krull dimension of M.

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.