Pointwise Projective Modules and Some Related Modules

Ghasan Naoum-Adil and Zaki Jamil-Zeana
Department of Mathematics, College of Science, University of Baghdad, Jadiryah, Baghdad, Iraq
e-mail: a.naoum@uruklink.net and jamils@uruklink.net

Abstract. Let \mathcal{R} be a commutative ring with 1 , and Let M be a (left) R-module. M is said to be pointwise projective if for each epimorphism $\alpha: \mathcal{A} \longrightarrow \mathcal{B}$, where A and \mathcal{B} are any \mathcal{R}-modules, and for each homomorphism $\beta: \mathcal{M} \longrightarrow \mathcal{B}$, then for every $m \in$ \mathcal{M}, there exists a homomorphism $\varphi: \mathcal{M} \longrightarrow \mathcal{A}$, which may depend on m, such that $\alpha \circ \varphi(m)=\beta(m)$. Our mean concern in this paper is to study the relations between pointwise projectivemodules with cancellation modules and their generalization generator modules, multiplication modules and its generalizations.

0. Introduction

Let \mathcal{R} be a commutative ring with 1 , and let \mathcal{M} be a (left) \mathcal{R}-module. \mathcal{M} is said to be pointwise projective(abbreviated by pwp.) if for each epimorphism $\alpha: \mathcal{A} \longrightarrow \mathcal{B}$, where \mathcal{A} and \mathcal{B} are any \mathcal{R}-modules, and for each homomorphism $\beta: \mathcal{M} \longrightarrow \mathcal{B}$, then for every $m \in \mathcal{M}$, there exists a homomorphism $\varphi: \mathcal{M} \longrightarrow \mathcal{A}$, which may depend on m, such that $\alpha \circ \varphi(m)=\beta(m)$. This definition appeared in [2] under the name locally projective. It is clear that every projective module is a pwp. module.

In this paper we study the relations between pwp. modules and cancellation modules and its generalization, generator modules, multiplication modules, quasimultiplication modules, and weak multiplication modules.

1. Cancellation, generator, and pointwise projective modules

Let \mathcal{R} be a commutative ring with 1 , and let \mathcal{M} be an \mathcal{R}-module, \mathcal{M} is called a cancellation module if for any ideals \mathcal{A} and \mathcal{B} of $\mathcal{R}, \mathcal{A M}=\mathcal{B} \mathcal{M}$ implies $\mathcal{A}=\mathcal{B}$ ([13]). \mathcal{M} is called weak cancellation module if for each two ideals \mathcal{A} and \mathcal{B} of \mathcal{R}, $\mathcal{A} \mathcal{M}=\mathcal{B} \mathcal{M}$ implies $\mathcal{A}+\operatorname{ann}(\mathcal{M})=\mathcal{B}+\operatorname{ann}(\mathcal{M})$, therefore \mathcal{M} is a cancellation module if and only if it is faithful weak cancellation ([13]). An \mathcal{R} module \mathcal{M} is called a $1 / 2$ weak cancellation if for any ideal \mathcal{A} of $\mathcal{R}, \mathcal{A} \mathcal{M}=\mathcal{M}$ implies $\mathcal{A}+\operatorname{ann}(\mathcal{M})=\mathcal{R}$, and \mathcal{M} is $1 / 2$ cancellation if it is faithful $1 / 2$ weak cancellation ([11]).

[^0]An \mathcal{R}-module \mathcal{M} is called a generator if for each \mathcal{R}-modules N, \mathcal{B} and for each $o \neq f \in \operatorname{hom}(\mathcal{B}, \mathcal{N})$, there exists a homomorphism $g \in \operatorname{hom}(\mathcal{M}, \mathcal{B})$ such that $f \circ g \neq 0([7]$, p.53). It is known that every generator module is a cancellation module ([6]), but the converse is not true.

There is an example in [11, p.100] of a cancellation module which is not generator. The following results show that a cancellation module is a generator module if it is pointwise projective. But first we recall that an \mathcal{R}-module \mathcal{M} is said to be pointwise projective (abbreviated by pwp.) if for each epimorphism $\alpha: \mathcal{A} \longrightarrow \mathcal{B}$, where \mathcal{A} and \mathcal{B} are any \mathcal{R}-modules, and for each homomorphism $\beta: \mathcal{M} \longrightarrow \mathcal{B}$, then for every $m \in \mathcal{M}$, there exists a homomorphism $\varphi: \mathcal{M} \longrightarrow \mathcal{A}$, which may depend on m, such that $\alpha \circ \varphi(m)=\beta(m)([2])$. Not that every projective module is a pwp.module. The next result will be useful later ([18]).
Theorem 1.1 (The Dual-Basis Lemma for pointwise projective modules).
Let \mathcal{M} be an \mathcal{R} module. \mathcal{M} is pwp.module if and only if for each $m_{1}, m_{2}, \cdots, m_{t} \in$ \mathcal{M}, there are $x_{1}, x_{2}, \cdots, x_{n} \in \mathcal{M}$ and $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n} \in \mathcal{M}^{*}$ such that $m_{i}=$ $\sum_{k=1}^{n} \varphi_{k}\left(m_{i}\right) x_{k}$, for all $i, 1 \leq i \leq t$.

We recall that trace $T(\mathcal{M})$ of an \mathcal{R}-module \mathcal{M} (simply T) is defined by $\sum \varphi(\mathcal{M})$, where the sum is taken over all $\varphi \in \mathcal{M}^{*}$.

Theorem 1.2. Let \mathcal{M} be a faithful pwp. \mathcal{R}-module, then the following statements are equivalent:
(1) \mathcal{M} is a generator module.
(2) Every simple \mathcal{R}-module is a homomorphic image of \mathcal{M}.
(3) \mathcal{M} is a cancellation module.
(4) \mathcal{M} is $1 / 2$ cancellation module.
(5) \mathcal{M} is $1 / 2$ weak cancellation module.
(6) \mathcal{M} is a weak cancellation module.
(7) \mathcal{M} contains a finite submodule \mathcal{W} with $\operatorname{ann}(\mathcal{W})=\operatorname{ann}(\mathcal{M})$.
(8) T is generated by idempotent.

Proof. (1) $\Rightarrow(3)([6])$.
(3) \Rightarrow (4) Clear.
$(4) \Rightarrow(2)([11])$.
(2) \Rightarrow (1) Assume $T \neq \mathcal{R}$, therefore there exists a maximal ideal \mathcal{A} of \mathcal{R} such that $T \subseteq \mathcal{A}$. Since $\mathcal{R} / \mathcal{A}$ is simple, then there exists an epimorphism $f: \mathcal{M} \longrightarrow \mathcal{R} / \mathcal{A}$. Since \mathcal{M} is pwp., then $\forall m \in \mathcal{M}, \exists h: \mathcal{M} \longrightarrow \mathcal{R}$, which may depend on m, such that $\pi \circ h(m)=f(m)=0$. Thus $f=0$, contradiction. Hence $T=\mathcal{R}$.
(4) $\Leftrightarrow(5)$ Let \mathcal{A} be an ideal of \mathcal{R} such that $\mathcal{A} \mathcal{M}=\mathcal{M}, \mathcal{M}$ is $1 / 2$ cancellation if and only if $\mathcal{A}=\mathcal{R}$ if and only if $\mathcal{A}+\operatorname{ann}(\mathcal{M})=\mathcal{R}$, because \mathcal{M} is faithful, if and only if \mathcal{M} is $1 / 2$ weak cancellation.
$(3) \Leftrightarrow(6)$ Its proof is a modification of the proof $(4) \Leftrightarrow(5)$.
(6) \Rightarrow (8) By [14] $T \mathcal{M}=\mathcal{M}$, then $T=\mathcal{R}$, thus T is generated by 1 which is idempotent.
$(7) \Rightarrow(8)$ Let $\mathcal{W}=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ be any finite subset of \mathcal{M} By ([14]) for each $i, 1 \leq i \leq n$, there exist $x_{i} \in \operatorname{ann}\left(a_{i}\right), y_{i} \in(T(\mathcal{M}))$, such that $x_{i}+y_{i}=l$. Let $l-y=\prod_{i}\left(l-y_{i}\right)$. Then $y \in T(\mathcal{M})$, and $(l-y) a_{i}=0 \forall i$. Now if $\operatorname{ann}(\mathcal{W})=\operatorname{ann}(\mathcal{M})$, then $l-y \in \operatorname{ann}(\mathcal{M})$ and $y a=a \forall a \in \mathcal{M}$. If $\ell \in \mathcal{M}^{*}$, then $\ell(a)=y \ell(a) \in(y)$. By [14] T is generated by idempotent.
$(8) \Rightarrow(7)$ By assumption $T=\mathcal{R} t, t^{2}=t$, then $t=\sum_{i=1}^{n} \varphi_{i}\left(m_{i}\right) ; \varphi_{i} \in \mathcal{M}^{*}$, $m_{i} \in \mathcal{M}$. Let \mathcal{W} be a submodule of \mathcal{M} generated by $m_{1}, m_{2}, \cdots, m_{n}$. It can easily be proved that $\operatorname{ann}(\mathcal{W})=\operatorname{ann}(\mathcal{M})$.
(8) \Rightarrow (1) By assumption, $T=\mathcal{R} e ; e^{2}=e . \operatorname{By}[14](l-e) \mathcal{M}=(l-e) T \mathcal{M}=0$, hence $(l-e) \in \operatorname{ann}(\mathcal{M})=0$. Thus $e=1$, therefore $T=\mathcal{R}$.

Next we seek conditions under which pwp. are $1 / 2$ weak cancellation. But first we recall the following. Let \mathcal{M} be a pwp. \mathcal{R}-module, then \mathcal{M}_{p} is a pwp. \mathcal{R}_{p}-module for each prime ideal P of $\mathcal{R}, J(\mathcal{M})=J(\mathcal{R}) \mathcal{M}$, and $J(\mathcal{M})=\mathcal{M}$ only if $\mathcal{M}=0$ ([14]).

Proposition 1.3. Let M be a non-zero pwp. \mathcal{R}-module. If \mathcal{R} is a local ring, then \mathcal{M} is a $1 / 2$ weak cancellation module.
Proof. Let \mathcal{A} be an ideal, of \mathcal{R} with $\mathcal{A} \mathcal{M}=\mathcal{M}$. Assume $\mathcal{A}+\operatorname{ann}(\mathcal{M}) \neq \mathcal{R}$. Since \mathcal{R} is local, then there exists a unique maximal ideal \mathcal{B} of \mathcal{R} with $\mathcal{A}+\operatorname{ann}(\mathcal{M}) \subseteq \mathcal{B}$, thus $\mathcal{M}=\mathcal{B} \mathcal{M}$ It is easily seen that $\mathcal{M}_{\mathcal{B}}=O$. Then there exists $r \in \mathcal{R}-\mathcal{B}$ such that $r m=0$, i.e. $\mathcal{M}=0$ and this is a contradiction.

Proposition 1.4. Let \mathcal{M} be a pwp. \mathcal{R}-module. Assume that \mathcal{M}_{p} is faithful for each maximal ideal P of \mathcal{R}, then M is a cancellation module.
Proof. Let P be a maximal ideal of \mathcal{R}, then \mathcal{M}_{p} is pwp. ([14]), by (1.3) \mathcal{M}_{p} is $1 / 2$ weak cancellation, and by (1.2) \mathcal{M}_{p} is a cancellation module. Now let \mathcal{A} and \mathcal{B} be any two ideals of \mathcal{R} with $\mathcal{A} \mathcal{M}=\mathcal{B} \mathcal{M}$, then $\mathcal{A}_{p} \mathcal{M}_{p}=\mathcal{B}_{p} \mathcal{M}_{p}$ for each maximal ideal P of \mathcal{R}. Hence $\mathcal{A}_{p}=\mathcal{B}_{p}$, and by [1], $\mathcal{A}=\mathcal{B}$.

A result similar to the following is known for projective modules ([7], p.132).
Proposition 1.5. Let \mathcal{M} be a pwp. \mathcal{R}-module, let P be any \mathcal{R}-module such that there is an index set I with $\mathcal{M} \oplus \mathcal{M}^{\prime} \cong \oplus_{i \in I} P_{i} ; P_{i}=P$ for all $i \in I$ and \mathcal{M}^{\prime} is a direct summand of copies of P, then P is a generator.
Proof. Let \mathcal{N}, \mathcal{L} be two \mathcal{R}-modules, and let $0 \neq f \in \operatorname{hom}(\mathcal{N}, \mathcal{L})$. Since every module is an epimorphic image of pwp. (free) module, then there is an epimorphism $h: \mathcal{M} \longrightarrow \mathcal{N}$. Since there is an index set I such that $\mathcal{M} \oplus \mathcal{M}^{\prime} \cong \oplus_{i \in I} P_{i}$; $P_{i}=P$ for all $i \in I$. Thus let $\pi: \oplus P_{i} \longrightarrow \mathcal{M}$ be the natural epimorphism. Define
$\varphi: P_{i} \longrightarrow \mathcal{M}$ as $\varphi=\left.\pi\right|_{p_{i}}$. Hence $h \circ \varphi: P \longrightarrow \mathcal{N}$ such that $f \circ h \circ \varphi \neq 0$ for some $i \in I$, therefore P is a generator.

Remark. There exist generator (hence cancellation) modules which are not pwp. modules. For example, let $\mathcal{M}=\mathbb{Z}_{2} \oplus \mathbb{Z}$ as \mathbb{Z}-module. It is easily seen that $T(\mathcal{M})=\mathbb{Z}$, hence \mathcal{M} is a generator ([7], p.100) (hence cancellation) module. It is easily seen that \mathbb{Z}_{2} as \mathbb{Z}-module is not pwp., then \mathcal{M} is not a pwp. \mathbb{Z}-module.

Next we look at conditions under which generator modules are pwp. modules. First observe the following result.

Proposition 1.6. Every generator ideal is a pwp. ideal.
Proof. Let I be a generator ideal of \mathcal{R}. By [7, p.100] there exist $x_{1}, x_{2}, \cdots, x_{n} \in I$ and $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n} \in I^{*}$ such that $1=\sum_{j=1}^{n} \varphi_{j}\left(x_{j}\right)$. Let $a \in I$,

$$
a=\sum_{j=1}^{n} \varphi_{j}\left(x_{j}\right) a=\sum_{j=1}^{n} \varphi_{j}(a) x_{j}
$$

Then by the Dual-Basis Lemma for pwp. modules, I is pwp.
Before stating the next result we introduce the following notation. Let $\operatorname{End}(\mathcal{M})$ (simply \mathcal{S}) be the endomorphism ring of an \mathcal{R}-module \mathcal{M}.
Proposition 1.7. Let \mathcal{M} be a generator \mathcal{R}-module. If \mathcal{S} is commutative, then \mathcal{M} is a pwp. \mathcal{R}-module.
Proof. By [7, p.100], there exist $\ell_{1}, \ell_{2}, \cdots, \ell_{n} \in \mathcal{M}^{*}$ and $x_{1}, x_{2}, \cdots, x_{n} \in \mathcal{M}$ such that $1=\sum_{i=1}^{n} \ell_{i}\left(x_{i}\right)$. Let $m \in \mathcal{M}$, then $m=\sum_{i=1}^{n} \ell_{i}\left(x_{i}\right) m$, thus $m \in T m$. Hence by [14] \mathcal{M} is a pwp. module.

Next we show conditions under which pwp. \mathcal{S}-modules are generator \mathcal{R} modules, but before stating the next result we introduce some notation. Let \mathcal{M} be an \mathcal{R}-module, define [,] $: \mathcal{M} \times \mathcal{M}^{*} \longrightarrow \mathcal{S}$ as $[m, f]=f_{m}$ where $f_{m}(a)=f(a) m$ for all $a \in \mathcal{M}$. Let Δ be the ideal of \mathcal{S} generated by $\operatorname{Im}[$,] ([17]). Recall that \mathcal{M} is said to be T-accessible if $T \mathcal{M}=\mathcal{M}$.

Proposition 1.8. Let \mathcal{M} be a T-accessible \mathcal{R}-module that contains an element, which is \mathcal{R}-torsion free. If \mathcal{M} is a pwp. \mathcal{S}-module, then \mathcal{M} is a generators \mathcal{R} module.
Proof. Let $x \in \mathcal{M}$ such that $\operatorname{ann}_{R}(x)=0$. By the Dual-Basis Lemma for pwp. modules, $x=\sum_{i=1}^{n} \ell_{i}(x) y_{i} ; \ell_{i} \in \mathcal{M}^{*}$ and $y_{i} \in \mathcal{M}$. By [17] $\Delta={ }_{s} T$, thus $\ell_{i}(x) \in \Delta$. Therefore there exists $\varphi_{i j} \in \mathcal{M}^{*}$ such that $\ell_{i}(x)=\sum_{j}\left[x, \varphi_{i j}\right]$, hence $x=\sum_{i} \sum_{j} \varphi_{i j}\left(y_{i}\right) x$. Then $1-\sum_{i} \sum_{j} \varphi_{i j}\left(y_{i}\right) \in \operatorname{ann}(x)=0$, therefore \mathcal{M} is a generator \mathcal{R}-module.

Remark. The last proposition is false without the condition \mathcal{M} is T-accessible. For example, let $\mathcal{M}=\mathbb{Q}$ as \mathbb{Z}-module. It is easily seen that \mathcal{M} is not pwp. \mathbb{Z}-module,
but \mathcal{M} as $\operatorname{End}(\mathbb{Q})$-module is a pwp. module since $\operatorname{End}(\mathbb{Q}) \cong \mathbb{Q}([4])$. Note that $T(\mathbb{Q})=0$.

2. Multiplication modules and pointwise projective modules

Let \mathcal{N} be a submodule of an \mathcal{R}-module \mathcal{M}. Put $[\mathcal{N}: \mathcal{M}]=\{r \in \mathcal{R} \mid r \mathcal{M} \subseteq \mathcal{N}\}$, let $[(a): \mathcal{M}]=[a: M]$. And put $\Theta(\mathcal{M})=\sum_{a \in \mathcal{M}}[a: \mathcal{M}]$. We recall that \mathcal{M} is called a multiplication module if for each submodule \mathcal{N} of \mathcal{M} there exists an ideal I of \mathcal{R} such that $\mathcal{N}=I \mathcal{M}$. And an ideal I of \mathcal{R} is a multiplication ideal if I is a multiplication \mathcal{R}-module ([3]). Smith ([15]) gave the following characterization for multiplication modules.

Proposition 2.1. An \mathcal{R}-module \mathcal{M} is multiplication if and only if for all $a \in \mathcal{M}$, $\operatorname{ann}(a)+\Theta(\mathcal{M})=\mathcal{R}$.

It is known that every projective ideal is a multiplication ideal ([9]), the following is more general;

Proposition 2.2. Every pwp. ideal is a multiplication ideal.
Proof. Let I be a pwp. ideal of \mathcal{R}. By ([14]), for all $a \in I, \operatorname{ann}(a)+T(I)=\mathcal{R}$. To show I is a multiplication ideal it is enough by (2.1) to prove that $T \subseteq \Theta(I)$. Let $u \in T$, then $u=\sum_{j} \ell_{j}(t) ; \ell_{j} \in I^{*}, t_{j} \in I$. Now, to prove that $u \in \Theta(I)$, we must show that $\ell_{j}\left(t_{j}\right) I \subseteq\left(t_{j}\right)$. Let $x \in \ell_{j}\left(t_{j}\right) I$, then $x=\ell_{j}\left(t_{j}\right) z=\ell_{j}(z) t_{j} \in\left(t_{j}\right)$.

The following example shows that the last proposition does not hold in pwp. modules in general.

Example 2.3. Let $\mathcal{M}=\mathbb{R} \oplus \mathbb{R}$ be an \mathbb{R}-module, hence \mathcal{M} is a pwp. module (Note that \mathcal{M} is a projective module). Assume \mathcal{M} is multiplication, then \mathcal{S} is commutative ([9]). But \mathcal{S} isomorphic to 2×2 matrices on \mathbb{R} which is not commutative, that is contradiction. Thus \mathcal{M} is not a multiplication module.

Next we consider when pwp. \mathcal{R}-modules are multiplication modules. Compare with [9].

Proposition 2.4. Let \mathcal{M} be a pwp. \mathcal{R}-module with \mathcal{S} a commutative ring, then \mathcal{M} is a multiplication module.
Proof. By [14], for all $n \in \mathcal{M}, \operatorname{ann}(n)+T=\mathcal{R}$. By (2.1) it is enough to prove $T \subseteq \Theta(\mathcal{M})$. Let $u \in T$, by [14] $u \in T^{2}$. Hence $u=\sum_{i} \sum_{j} \sum_{k} \ell_{i j}\left(m_{i j}\right) \alpha_{i k}\left(x_{i k}\right)$ where $\ell_{i j}, \alpha_{i k} \in \mathcal{M}^{*}, m_{i j}, x_{i k} \in \mathcal{M}$. Now, we show that $\sum_{j} \sum_{k} \ell_{i j}\left(m_{i j}\right) \alpha_{i k}\left(x_{i k}\right) \mathcal{M}$ $\subseteq\left(x_{i k}\right)$. For all $y \in \mathcal{M}$,

$$
\begin{aligned}
\ell_{i j}\left(m_{i j}\right) \alpha_{i k}\left(x_{i k}\right) y & =\left[y, \alpha_{i k}\right]\left(\left[x_{i k}, \ell_{i j}\right]\left(m_{i j}\right)\right) \\
& =\left[x_{i k}, \ell_{i j}\right]\left(\left[y, \alpha_{i k}\right]\left(m_{i j}\right)\right) \\
& =\alpha_{i k}\left(m_{i j}\right) \ell_{i j}(y) x_{i k} \\
& \in\left(x_{i k}\right)
\end{aligned}
$$

The following is an immediate consequence of the proof of the last proposition.

Corollary 2.5. Let \mathcal{M} be a pwp. \mathcal{R}-module such that $T \subseteq \Theta(\mathcal{M})$, then \mathcal{M} is a multiplication module.

It is known that the endomorphism ring of a locally cyclic \mathcal{R}-module is commutative ([9]). Thus we have at once, compare with [9].

Proposition 2.6. Every locally cyclic pwp. \mathcal{R}-module is a multiplication module.
We summarize the last results in the following theorem, compare with [9].
Theorem 2.7. Let \mathcal{M} be a pwp. \mathcal{R}-module, then the following statements are equivalent:
(1) \mathcal{M} is a multiplication module.
(2) \mathcal{S} is a commutative ring.
(3) \mathcal{M} is locally cyclic.
(4) $T \subseteq \Theta(\mathcal{M})$.

Remark. The last theorem fails if the condition that \mathcal{M} is a pwp. \mathcal{R}-module is removed. For example, let \mathbb{Q} be the module of rational numbers over the integers \mathbb{Z}. It is known that $\operatorname{End}(\mathbb{Q}) \cong \mathbb{Q}([4])$, hence commutative. But it is easy to see that \mathbb{Q} is not a multiplication module. Observe that \mathbb{Q} is not a pwp. module ([14]).

It is known that if \mathcal{M} is a finitely generated multiplications \mathcal{R}-module, then \mathcal{M} is projective if and only if $\operatorname{ann}(\mathcal{M})=\mathcal{R}(1-e) ; e^{2}=e([10])$. This statement is false if \mathcal{M} is not finitely generated. However, we have the following.

Proposition 2.8. Let \mathcal{M} be a multiplication \mathcal{R}-module with $\operatorname{ann}(\mathcal{M})=\mathcal{R}(l-e)$; $e^{2}=e$. Then \mathcal{M} is a pwp. \mathcal{R}-module.
Proof. Let $a \in \mathcal{M}$, then $\mathcal{R} a$ is a cyclic submodule of \mathcal{M}. By [10] $a=\sum_{i=1}^{n} f_{i}(a) b_{i}$; $b_{i} \in \mathcal{M}, f_{i} \in \mathcal{M}^{*}$. By (1.1) \mathcal{M} is a pwp. module.
Remark. The last proposition is false without the condition $\operatorname{ann}(\mathcal{M})=\mathcal{R}(1-e)$; $e^{2}=e$. For example, \mathbb{Z}_{2} as \mathbb{Z}-module is multiplication but it is not pwp. Note that $\operatorname{ann}\left(\mathbb{Z}_{2}\right)$ is not generated by an idempotent element.

The following theorem is a generalization of proposition (2.2).
Proposition 2.9. Every pwp. submodule of a flat multiplication module is a multiplication module.
Proof. Let \mathcal{M} be a pwp. submodule of the flat multiplication module \mathcal{N}. Since \mathcal{N} is a flat module, then for each maximal ideal P of $\mathcal{R}, \mathcal{N}_{P}$ is a flat \mathcal{R}_{p}-module, and
by [3] N_{p} is cyclic. Thus $\operatorname{ann}\left(\mathcal{N}_{p}\right)$ is a pure ideal in \mathcal{R}_{p}. Hence $\operatorname{ann}\left(\mathcal{N}_{p}\right)=0$ or $\operatorname{ann}\left(\mathcal{N}_{p}\right) \cong \mathcal{R}_{p}$, thus either $\mathcal{N}_{P}=(0)$ or $\mathcal{N}_{p} \cong \mathcal{R}_{p}$. On the other hand, by [14], \mathcal{M}_{p} is a pwp. \mathcal{R}_{p}-module and it is contained in \mathcal{N}_{p}, note that $\mathcal{M}_{p}=(0)$ if $\mathcal{N}_{p}=(0)$. Hence \mathcal{M}_{p} is isomorphic to a pwp. ideal of \mathcal{R}_{p}. By (2.2) \mathcal{M}_{p} is a multiplication module, then \mathcal{M}_{p} is cyclic. Hence \mathcal{M} is locally cyclic. Therefore by (2.7) \mathcal{M} is multiplication.

Since every multiplication module with pure annihilator is flat ([8]), we have.
Corollary 2.10. Every pwp. submodule of a multiplication module with pure annihilator is multiplication.

3. Quasi-multiplication modules and pointwise projective modules

Let \mathcal{N} be a submodule of an \mathcal{R}-module \mathcal{M}, put $[\mathcal{N}: \mathcal{M}]_{S}=\{f \in \operatorname{End}(\mathcal{M}) \mid$ $f(\mathcal{M}) \subseteq \mathcal{N}\}, \Theta_{S}(\mathcal{M})=\sum_{a \in \mathcal{M}}[a: \mathcal{M}]_{S}$, and $\operatorname{ann}_{S}(a)=\{f \in \operatorname{End}(\mathcal{M}) \mid f(a)=0\} ;$ $a \in \mathcal{M}$. An \mathcal{R}-module \mathcal{M} is called quasi-multiplication if for all $a \in \mathcal{M}$, $\operatorname{ann}_{S}(a)+\Theta_{S}(\mathcal{M})=S([5])$.

It is known that every projective module is quasi-multiplication module ([5]). A similar result holds for pwp. modules.

Proposition 3.1. Every pwp. module is a quasi-multiplication module.
Proof. Let \mathcal{M} be an \mathcal{R}-module, and let $m \in \mathcal{M}$. By (1.1), $m=\sum_{k=1}^{n} \varphi_{k}(m) x_{k}$; $x_{k} \in \mathcal{M}, \varphi_{k} \in \mathcal{M}^{*}$. Then $m=\sum_{k=1}^{n}\left[x_{k}, \varphi_{k}\right](m)$. If $\gamma=\sum_{k=1}^{n}\left[x_{k}, \varphi_{k}\right]$, then $\gamma \in \Delta$, thus $m=\gamma(m)$. Therefore $1-\gamma \in \operatorname{ann}_{S}(m)$. But $\gamma \in \Theta_{S}(\mathcal{M})$, then $\operatorname{ann}_{S}(m)+\Theta_{S}(\mathcal{M})=S$.

The following example shows that there are quasi-multiplication modules, which are not pwp. modules

Example 3.2. Let $\mathcal{R}=\mathbb{Z}_{8}$. Consider the \mathcal{R}-module $\mathcal{M}=(\overline{0}, \overline{4}) \oplus \mathbb{Z}_{8}$. It is Clear that $(\overline{0}, \overline{4})$ and \mathbb{Z}_{8} are quasi- multiplication modules. By [5] \mathcal{M} is a quasimultiplication module. Since the only non-zero homomorphism $f:(\overline{0}, \overline{4}) \longrightarrow \mathbb{Z}_{8}$ is $f(\bar{x})=\bar{x}$, then by $(1.1)(\overline{0}, \overline{4})$ is not pwp. Therefore \mathcal{M} is not pwp. ([14]).

Next we consider when quasi-multiplication modules are pwp. modules. It is known that if \mathcal{M} is a finitely generated quasi multiplication \mathcal{R}-module such that for all $a \in \mathcal{M}, \operatorname{ann}(a)$ is generated by an idempotent element, then \mathcal{M} is a projective module ([5]). We generalize this result in theorem (3.4). But first we recall the following.

Proposition 3.3 ([18]). Let \mathcal{M} be an \mathcal{R}-module, then \mathcal{M} is a pwp. module if and only if for all column-finite matrices $\left\{a_{i j} \mid i \in I ; j \in J\right\} ; a_{i j} \in \mathcal{R}$ (i.e. each column has only a finite number of non-zero elements), and all families $\left\{m_{i} \mid i \in I\right\}$; $m_{i} \in \mathcal{M}$, with $\sum_{i} a_{i j} m_{i}=0$ for all $j \in J$, and for each finite subset I_{o} of I, there are finite families $\left\{x_{k} \mid k \in K\right\} ; x_{k} \in \mathcal{M},\left\{r_{k i} \mid k \in K, i \in I\right\} ; r_{k i} \in \mathcal{R}$ such that:
a. $\sum_{i \in I_{0}} r_{k i} a_{i j}=0$.
b. $m_{i}=\sum_{k} r_{k i} x_{k}, \quad \forall i \in I_{0}$.

Theorem 3.4. Let \mathcal{M} be a quasi-multiplication \mathcal{R}-module such that for all $a \in \mathcal{M}$, $\operatorname{ann}(a)=\mathcal{R}(l-e) ; e^{2}=e$ and e depends on a, \mathcal{M} is a pwp. module.
Proof. Let $\left\{a_{k j} \mid k \in K, j \in J\right\} ; a_{k j} \in \mathcal{R}$, and let $\left\{m_{k} \mid k \in K\right\} ; m_{k} \in \mathcal{M}$, such that:

$$
\begin{equation*}
\sum_{k \in K} a_{k j} m_{k}=0, \quad \forall j \in J \tag{1}
\end{equation*}
$$

Since $\operatorname{ann}_{S}\left(m_{k}\right)+\Theta_{S}(\mathcal{M})=S$, then there exist $\varphi \in \operatorname{ann}_{S}\left(m_{k}\right), g=\sum_{i \in I} \gamma_{i}$ $\in \Theta_{S}(\mathcal{M})$, with:

$$
\begin{equation*}
\varphi+g=I \tag{2}
\end{equation*}
$$

Since $\gamma_{i}(\mathcal{M}) \subseteq\left(m_{i}\right)$, then $\gamma_{i}\left(m_{k}\right)=r_{i k} m_{i}$. Let $K=\{l, 2, \cdots, n\}$ be an arbitrary subset of K, and let $\left\{r_{i k} e_{i} \mid k \in K, i \in I\right\} ; r_{i k} e_{i} \in \mathcal{R}$, where e_{i} is an idempotent element such that $\operatorname{ann}\left(m_{i}\right)=\mathcal{R}\left(l-e_{i}\right)$. Thus $m_{i}=e_{i} m_{i}$. By (2), $\sum_{i \in I} \gamma_{i}\left(m_{k}\right)=m_{k}$. Therefore $\sum_{i \in I} r_{i k} m_{i}=m_{k}$, hence $m_{k}=\sum_{i \in I} r_{i k} e_{i} m_{i}$. By (1), $0=\gamma_{i}\left(\sum_{k \in K^{\prime}} a_{k j} m_{k}\right)=m_{i}\left(\sum_{k} a_{k j} r_{i k}\right)$. Then

$$
\sum_{k} a_{k j} r_{i k} e_{i}=\left(\sum_{k} a_{k j} r_{i k}\right) e_{i}=0
$$

By (3.3), \mathcal{M} is a pwp. module.
It was proved in [5] that if \mathcal{M} is a finitely generated quasi multiplication \mathcal{R} module with $\mathcal{R} / \operatorname{ann}(\mathcal{M})=S$, then \mathcal{M} is multiplication. Besides if $\operatorname{ann}(\mathcal{M})=$ $\mathcal{R}(l-e) ; e^{2}=e$, then \mathcal{M} is a projective module ([15]). We generalize this result as follows.

Proposition 3.5. Let \mathcal{M} be a quasi-multiplication \mathcal{R}-module with $\mathcal{R} / \operatorname{ann}(\mathcal{M})=S$ and $\operatorname{ann}(\mathcal{M})=\mathcal{R}(l-e) ; e^{2}=e$, then \mathcal{M} is a pwp. module.
Proof. Let $0 \neq m \in \mathcal{M}$. Since $\operatorname{ann}_{S}(m)+\Theta_{S}(\mathcal{M})=S$, there exist $\varphi \in \operatorname{ann}_{S}(m)$ and $g=\sum \gamma_{j} \in \Theta_{S}(\mathcal{M})$ such that $\varphi+g=I$. Since $S=\mathcal{R} / \operatorname{ann}(\mathcal{M})$, then there exists $r_{j} \in \mathcal{R}$ such that $\gamma_{j}(x)=r_{j} x$ for all $x \in \mathcal{M}$. Because $\gamma_{j}(\mathcal{M}) \subseteq\left(a_{j}\right) ; a_{j} \in \mathcal{M}$, thus $r_{j} \mathcal{M} \subseteq\left(a_{j}\right)$. Hence for all $x \in \mathcal{M}, r_{j} \in \Theta(\mathcal{M})$. Now $m=g(m)=\sum_{j} r_{j} m$, hence $1-\sum r_{j} \in \operatorname{ann}(m)$. Therefore by (2.1) \mathcal{M} is multiplication. By (2.8) \mathcal{M} is pwp.

4. Weak multiplication modules and pointwise projective modules

An \mathcal{R}-module \mathcal{M} is said to be a weak multiplication module if for each submodule \mathcal{N} of $\mathcal{M}, \mathcal{N}=\sum \varphi(\mathcal{M})$, where the sum is taken over all $\varphi \in \operatorname{hom}(\mathcal{M}, \mathcal{N})$ ([12]).

It is proved in [12] that a T-accessible \mathcal{R}-module \mathcal{M} is weak multiplication if and only if for all $m \in \mathcal{M}, m \in T m$. Since for every pwp. \mathcal{R}-module \mathcal{M}, for all $m \in \mathcal{M}, m \in T m$ ([14]), so we have at once.

Proposition 4.1. Every pwp. \mathcal{R}-module is weak multiplication.
Remark. The converse of the last proposition is false. In fact, the \mathbb{Z}-module Z_{2} is weak multiplication ([12]), but it is not pwp. ([14]).

Therefore we will look at conditions under which weak multiplication modules are pwp. modules.

Proposition 4.2. Let \mathcal{M} be weak multiplication T-accessible \mathcal{R}-module. If S is commutative, then \mathcal{M} is a pwp. module.
Proof. By assumption, for all $m \in \mathcal{M}, m \in T m$. By [14] \mathcal{M} is pwp.
Remark. Let \mathcal{M} be an \mathcal{R}-module. It is proved in [12] that if $T=\mathcal{R}$, then \mathcal{M} is weak multiplication, therefore there exist weak multiplication modules which are not pwp. modules. For examples, let $\mathcal{M}=\mathbb{Z}_{2} \oplus \mathbb{Z}$ as \mathbb{Z}-module, hence $T(\mathcal{M})=\mathbb{Z}$, that means \mathcal{M} is weak multiplication. But \mathcal{M} is not pwp., because \mathbb{Z}_{2} as \mathbb{Z}-module is not pwp. $([14])$. Note that $\operatorname{End}_{\mathbb{Z}}\left(\mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}, \operatorname{End}_{\mathbb{Z}}(\mathbb{Z}) \cong \mathbb{Z}$ and $\operatorname{hom}_{\mathbb{Z}}\left(\mathbb{Z}, \mathbb{Z}_{2}\right) \neq 0$ hence by $[16] \operatorname{End}_{\mathbb{Z}}(\mathcal{M})$ is not commutative.

It is observed in [14] that a pwp. \mathcal{R}-module is not necessary a pwp. S-module. The next proposition shows when this statement holds. First we need the following proposition ([6]).

Proposition 4.3.

(1) Let \mathcal{M} be a weak multiplication \mathcal{R}-module such that S is a commutative ring, then \mathcal{M} is a weak multiplication S-module.
(2) Let \mathcal{M} be a T-accessible \mathcal{R}-module. If \mathcal{M} is a weak multiplications S-module and S is a commutative ring, then \mathcal{M} is a weak multiplication \mathcal{R}-module.

Proposition 4.4. Let \mathcal{M} be an \mathcal{R}-module such that S is commutative. Then \mathcal{M} is a pwp. \mathcal{R}-module if and only if \mathcal{M} is a pwp. \mathcal{S}-module.
Proof. (\Rightarrow) By (4.1), \mathcal{M} is a weak multiplication \mathcal{R}-module, then by (4.3) \mathcal{M} is a weak multiplication \mathcal{S}-module. By [17] $\Delta \mathcal{M}=\mathcal{M}$, and $s T \mathcal{M}=M$, thus by (4.2) \mathcal{M} is a pwp. S-module.
$(\Leftarrow) \mathrm{By}[17], \Delta \mathcal{M}=\mathcal{M}$, hence $T \mathcal{M}=\mathcal{M}$ and \mathcal{M} is a weak multiplication S-module. By (4.3) \mathcal{M} is a weak multiplication \mathcal{R}-module. Therefore by (4.2) \mathcal{M} is a pwp. \mathcal{R}-module.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley publishing Company, London, (1969).
[2] G. Azumaya, A characterization of semi-perfect rings and modules, Jain, S. K. (ed.) et al., Ring theory. Proceedings of the biennial Ohio State-Denison mathematics conference, May 14-16, (1992) dedicated to the memory of H. J. Zassenhaus, Singapore: World Scientific, 28-40, (1993).
[3] A. Barnard, Multiplication modules, Journal of Algebra, 71(1981), 174-178.
[4] L. Fuchs, Abelian groups, Pergamon press, Oxford, (1960).
[5] P. A. Hummadi, Some generalizations af multiplication modules, Ph. D. thesis, College of science, University of Baghdad, (1991).
[6] S. N. Kadhim, On self-generator modules, M. Sc. thesis, College of science, University of Baghdad, (1994).
[7] F. Kasch, Modules and rings, cademic press, London, (1982).
[8] A. G. Naoum, Flat modules and multiplication modules, Periodica Mathematica Hungarica, 21(1990), 309-317.
[9] A. G. Naoum, A note on projecfive modules and multiplication modules, Beitrage zur Algebra Und Geometric, 32(1991), 27-32.
[10] A. G. Naoum, Regular multiplication modules, Periodica Mathematica Hungarica, 31(1995), 155-162.
[11] A. G. Naoum, $1 / 2$ Cancellation modules, Kyungpook Mathematical Journal, 36(1996), 97-106.
[12] A. G. Naoum and P. A. Hummadi, Multiplication modules and weak multiplication modules, Preprint.
[13] A. G. Naoum and A. S. Mijbass, Weak cancellation modules, Kyungpook Mathematical Journal, 37(1997), 73-82.
[14] A. G. Naoum and Z. Z. Jameel, A note on poinrwise protective modules, National Journal of Mathematics, Preprint.
[15] P. P. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 223-235.
[16] J. Zelmanowitz, Commutaiive endomorphism rings, Caa. J. Math. Soc., 23(1971), 69-76.
[17] B. Zimmermann-Huisgen, Endomorphism ring of self-generators, Pacific J. Math., 61(1975), 587-601.
[18] B. Zimmermann-Huisgen, Pure submodules of direct products of free modules, Math. Ann., 224(1976), 233-245.

[^0]: Received March 2, 1999.
 2000 Mathematics Subject Classification: Primary 16D40; secondary 16D80 .
 Key words and phrases: projective module, pointwise projective module, multiplication module, cancellation module.

