• Title/Summary/Keyword: projection spectral analysis

Search Result 11, Processing Time 0.027 seconds

Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

  • Kang, Hoon;Lee, Hyun Su
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.634-642
    • /
    • 2018
  • Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.

A Comparative Study of Reconstruction Methods for LDV Spectral Analysis (LDV 스펙트럼 분석을 위한 재생방법의 비교 연구)

  • 이도환;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.166-174
    • /
    • 1994
  • A critical evaluation is made of the spectral bias which occurs in the use of a laser doppler velocimeter(LDV). Two processing algorithms are considered for spectral estimates: the sample and hold interpolation method(SH) and the nonuniform Shannon reconstruction technique(SR). Assessment is made of these for varying data densities $(0.05{\le}d.d.{\le}5)$ and turbulence levels(t.i.=30%, 100%). As an improved version of the spectral estimator, the utility of POCS (the projection onto convex sets) has been tested in the present study. This algorithm is found useful to be in the region when $d.d.{\gep}3.$

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong;Jin, Seung-Seop;Park, Yong-Hwa
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.311-325
    • /
    • 2020
  • In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

A study on the spectrum assignment problem for a functional linear system (함수선형계의 스펙트럼지정문제에 관한 연구)

  • 이장우
    • 전기의세계
    • /
    • v.31 no.3
    • /
    • pp.209-217
    • /
    • 1982
  • This paper considers a finite spectrum assignment Problem for a functional retarded linear differential system with delays in control only. In this problem, by generalizing from an abstract linear system characterized by Semigroups on a Hilbert space to a finite dimensional linear system, we unify the relationship between a control-delayed system and its non-delayed system, and then by using the spectrum of the generator-decomposition of Semigroup, we try to get a feedback law which yields a finite spectrum of the closed-loop system, located at an arbitrarily preassigned sets of n points in the complex plane. The comparative examinations between the standard spectrum assignment method and the method of spectral projection for the feedback law which consists of proportional and finite interval terms over present and past values of control variables are also considered. The analysis is carry down to the elementary spectral projection level because, in spite of all the research efforts, so far there has been no significant attempt to obtain the feedback implementation directly from the abstract representation forms in the case of multivariables.

  • PDF

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

Hyperspectral Target Detection by Iterative Error Analysis based Spectral Unmixing (Iterative Error Analysis 기반 분광혼합분석에 의한 초분광 영상의 표적물질 탐지 기법)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.547-557
    • /
    • 2017
  • In this paper, a new spectral unmixing based target detection algorithm is proposed which adopted Iterative Error Analysis as a tool for extraction of background endmembers by using the target spectrum to be detected as initial endmember. In the presented method, the number of background endmembers is automatically decided during the IEA by stopping the iteration when the maximum change in abundance of the target is less than a given threshold value. The proposed algorithm does not have the dependence on the selection of image endmembers in the model-based approaches such as Orthogonal Subspace Projection and the target influence on the background statistics in the stochastic approaches such as Matched Filter. The experimental result with hyperspectral image data where various real and simulated targets are implanted shows that the proposed method is very effective for the detection of both rare and non-rare targets. It is expected that the proposed method can be effectively used for mineral detection and mapping as well as target object detection.

Characterization of Trabecular Bone Structure using 2D Fourier Transform and Fractal Analysis (Fractal dimension과 2차원 푸리에변환을 이용한 수질골의 특성화에 관한 실험적 연구)

  • Lee Keon Il
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.339-353
    • /
    • 1998
  • The purpose of this study was to investigate whether a radiographic estimate of osseous fractal dimension and power spectrum of 2D discrete Fourier transform is useful in the characterization of structural changes in bone. Ten specimens of bone were decalcified in fresh 50 ml solutions of 0.1 N hydrochloric acid solution at cummulative timed periods of 0 and 90 minutes. and radiographed from 0 degree projection angle controlled by intraoral parelleling device. I performed one-dimensional variance. fractal analysis of bony profiles and 2D discrete Fourier transform. The results of this study indicate that variance and fractal dimension of scan line pixel intensities decreased significantly in decalcified groups but Fourier spectral analysis didn't discriminate well between control and decalcified specimens.

  • PDF

Study on the Time Response of Reduced Order Model under Dynamic Load (동하중 하에서 축소 모델의 구성과 전체 시스템 응답과의 비교 연구)

  • 박수현;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, an efficient model reduction scheme is presented for large scale dynamic systems. The method is founded on a modal analysis in which optimal eigenvalue is extracted from time samples of the given system response. The techniques we discuss are based on classical theory such as the Karhunen-Loeve expansion. Only recently has it been applied to structural dynamics problems. It consists in obtaining a set of orthogonal eigenfunctions where the dynamics is to be projected. Practically, one constructs a spatial autocorrelation tensor and then performs its spectral decomposition. The resulting eigenfunctions will provide the required proper orthogonal modes(POMs) or empirical eigenmodes and the correspondent empirical eigenvalues (or proper orthogonal values, POVs) represent the mean energy contained in that projection. The purpose of this paper is to compare the reduced order model using Karhunen-Loeve expansion with the full model analysis. A cantilever beam and a simply supported plate subjected to sinusoidal force demonstrated the validity and efficiency of the reduced order technique by K-L method.

  • PDF

On-line Magnetic Resonance Quality Evaluation Sensor

  • Kim, Seong-Min;McCarthy, Michael J.;Chen, Pictiaw;Zion, Boaz
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.314-324
    • /
    • 1996
  • A high speed NMR quality evaluation sensor was designed , constructed and tested . The device consists of an NMR spectrometer coupled to a conveyor system. The conveyor was run at speeds ranging from 0 to 250 mm/s. Spectral of avocado fruits and one-dimensional magnetic resonance images of pickled olives were acquired while the samples were moving on a conveyor belt mounted through a 20Tesla NMR magnet with a 20 mm diameter surface coil and a 150 mm diameter imaging coil respectively. Fro a magnetic resonance spectrum analysis, motion through variations in the magnetic field tends to narrow spectral line width just like using sample rotation in high resolution NMR to narrow spectral line width. Spectrum analysis was used to detect the dry weight of avocado fruits using the ratio oil and water resonance peaks. Good correlations maximum r=0.970@ 50 mm/s and minimum r=0.894@250mm/s ) between oil and water resonance peak ratio and dry weight of avocados were observed at speeds ra ging from0 to 250mm/s. For the application of magnetic resonance imaging (MRI) method, the projections were used to distinguish between pitted and non-pitted olives . Effect of fruit position in the coil was tested and coil degree effects were noticed when projects were generated under dynamic conditions. Various belt speeds (up to 250mm/s) were tested and detection results were compared to static measurements. Higher classification errors were occurred at dynamic conditions compared to errors while olives were at rest.

  • PDF

Discrimination model of cultivation area of Corni Fructus using a GC-MS-Based metabolomics approach (GC-MS 기반 대사체학 기법을 이용한 산수유의 산지판별모델)

  • Leem, Jae-Yoon
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • It is believed that traditional Korean medicines can be managed more scientifically through the development of logical criteria to verify their region of cultivation, and that this could contribute to the advancement of the traditional herbal medicine industry. This study attempted to determine such criteria for Sansuyu. The volatile compounds were obtained from 20 samples of domestic Corni fructus (Sansuyu) and 45 samples of Chinese Sansuyu by steam distillation. The metabolites were identified in the NIST Mass Spectral Library via the obtained gas chromatography/mass spectrometer (GC/MS) data of 53 training samples. Data binning at 0.2 min intervals was performed to normalize the number of variables used in the statistical analysis. Multivariate statistical analyses, such as principle component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed using the SIMCA-P software package. Significant variables with a variable importance in the projection (VIP) score higher than 1.0 were obtained from OPLS-DA, and variables that resulted in a p-value of less than 0.05 through one-way ANOVA were selected to verify the marker compounds. Finally, among the 11 variables extracted, 1-ethylbutyl-hydroperoxide (9.089 min), nonadecane (20.170 min), butylated hydroxytoluene (25.319 min), 5β,7βH,10α-eudesm-11-en-1α-ol (25.921 min), 7,9-bis(2-methyl-2-propanyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (34.257 min), and 2-decyldodecyl-benzene (54.717 min) were selected as markers to indicate the origin of Sansuyu. The statistical model developed was suitable for the determination of the geographical origin of Sansuyu. The cultivation areas of four Korean and eight Chinese Sansuyu samples were predicted via the established OPLS-DA model, and it was confirmed that 11 of the 12 samples were accurately classified.