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Projection spectral analysis is investigated and refined in this paper, in order to

unify principal component analysis and independent component analysis. Singular

value decomposition and spectral theorems are applied to nonsymmetric correlation

or covariance matrices with multiplicities or singularities, where projections and

nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-

product of orthogonal projection operators and real distinct eigenvalues for squared

singular values, but also reduces the dimension of correlation or covariance if there

are multiple zero eigenvalues. Moreover, incremental learning strategies of projec-

tion spectral analysis are also suggested to improve the performance.
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1 | INTRODUCTION

Projection spectral analysis [1] (PSA) is a useful tool that
can be applied to unsupervised learning in the field of neu-
ral networks, where we deal with correlation or covariance
matrices. PSA is mathematically a class of spectral decom-
positions [2] through which we may use the resolution of
identity and obtain projections and/or nilponents for eigen-
values. In this paper, PSA will be extended to a unified
paradigm of machine learning, including both principal
component analysis (PCA) and independent component
analysis (ICA), by exploiting singular value decomposition.
Moreover, it is a generalized method of analyzing eigen-
structures that are neither necessarily independent nor
orthogonal, since multiple eigenvalues are considered,
including singularities, in these matrices. Correlation or
covariance matrices are widely used in the field of neural
networks, especially in Hebbian learning [3], Hopfield
memories [4], bidirectional associative memories [5], PCA
[6], ICA [7,8], fast ICA [9], multilayer associative neural
networks [10], Hinton's deep learning architectures [11,12],

convolutional neural networks [13,14], and others [15].
Most of these neural networks are constructed in terms of
correlation or covariance matrices, whose performance
depends on the eigen-pairs, geometrically aligned to form
localized minima of the energy terrains.

We begin by defining our network structure for PSA
and then explain its mathematical foundations. The correla-
tion or covariance matrix, the weight matrix AK, of input-
hidden layers may be represented by

AK ¼ 1
K
½YXT � ¼ 1

K
∑
K

i¼1
yixTi ∈Rm�n; (1)

where K is the number of data pairs, xi ∈Rn�1 is the ith input
data, yi ∈Rm�1 is the ith hidden data, X ¼ ½x1 � � � xK �∈Rn�K ,
and Y ¼ ½y1 � � � yK �∈Rm�K [1]. The hidden data yi consti-
tutes an orthogonal set of kernel functions, yTi yj ¼ mδij,
ascribed to a Haar wavelet; however, it is possible to adopt
other wavelet functions. Here, δij is the Kronecker delta func-
tion. If the training output is zi ∈Rp�1, the weight matrix WK

of the output layer is described by
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WK ¼ 1
m
∑
K

i¼1
ziyTi ∈Rp�m; (2)

where m ¼ 2ceilðlog2 KÞ (ceil(a) is a function generating an inte-
ger larger than real a) since all the training data should have a
one-to-one correspondence with distinct orthogonal vectors,
yi's. WK is a special case of weights in Hebbian learning [3].
In the hidden layer, we have the following iterative matrix
equation for the prescribed data of Haar wavelet packets:

h1 ¼ 1 1
�1 1

� �
; � � � ; hm ¼ hm�1 hm�1

�hm�1 hm�1

� �
: (3)

Therefore, hTmhm ¼ m � Im, where Im is the m × m identity
matrix. Here, the hidden data yi is chosen from either a
row or a column vector of hm because K ≤ m. The block
diagram of PSA is shown in Figure 1. Now, we consider
the singular value decomposition of AK in the next section.

1.1 | Singular value decomposition of AK in
PSA

For a large number of K, we can simply assume that m ≥ n,
which is obviously an overdetermined case of singular value
decomposition. Therefore, AT

KAK becomes

AT
KAK ¼ 1

K2 ∑
K

i¼1
yixTi

� �T

∑
K

j¼1
yjxTj

 !

¼ 1
K2 ∑

K

i¼1
∑
K

j¼1
ðyTi yjÞ½xixTj �

¼ 1
K2 ∑

K

i¼1
∑
K

j¼1
mδij½xixTj �

¼ m
K2 ∑

K

i¼1
½xixTi �

(4)

where AT
KAK ∈Rn�n is symmetric. If the rank of AT

KAK is
n, n distinct positive real eigenvalues λi, and the associated

orthonormal eigenvectors vi ∈Rn�1, or the right singular
vectors of AK, are obtained.

AT
KAKvi ¼ λivi: (5)

If we define the singular value σi ¼
ffiffiffiffi
λi

p
and the following

relationship,

AKvi ¼ σiui (6)

where ui ∈Rm�1 are the left singular vectors, then from
(6), we can obtain

AK ½v1j � � � jvn� ¼ ½u1j � � � jun�Σ
where Σ ¼ diagi¼1∼nfσig ∈Rn�n:

(7)

Now, the singular value decomposition [16] is found by
rearranging the above equation,

AKV ¼ UΣ or AK ¼ UΣVT (8)

where U ¼ ½u1j � � � jun�∈Rm�n and V ¼ ½v1j � � � jvn�∈Rn�n.
The above equation (8) shows reduced singular value
decomposition. Equation (4) is defined by A� ∈Rn�n,

A� ¼ AT
KAK ¼ m

K2 ∑
K

i¼1
½xixTi � (9)

where A� is a symmetric and positive semi-definite matrix,
but nonsymmetric cases will be also taken into account.

On the other hand, in underdetermined cases (m < n), it
is assumed that AKAT

K has a full rank m,

AKAT
Kui ¼ λiui: (10)

Similarly, the singular value is defined, and if the follow-
ing relationship holds,

AT
Kui ¼ σivi (11)

it is concluded that

AT
KU ¼ VΣ; or AK ¼ UΣVT : (12)

Therefore, equations (8) and (12) are the same, but the
sizes of U,V and Σ are different in their reduced version.

1.2 | Spectral theorem of A� in PSA

We consider a real-value and square matrix A� of a correla-
tion or a covariance, which is not necessarily symmetric.
From the spectral theorem [2], A� is decomposed into pro-
jections and nilpotents. Let Pi ∈Rn�n be a projection, and
let Ni ∈Rn�n be a nilpotent; then, A� can be described by

A� ¼ ∑
κ

i¼1
ðλiPi þ NiÞ; (13)

where ∑κ
i¼1 mi ¼ n, and λi is the ith eigenvalue of A� with

its multiplicity mi, which is the root of the characteristic
polynomial ΔA� ðλÞ ¼ 0. Here, we consider the multiplicities

FIGURE 1 Block diagram of projection spectral analysis (PSA)
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of factors (λ − λi)'s in the characteristic equation, which
becomes

ΔA� ðλÞ ¼
Yκ
i¼1

ðλ� λiÞmi : (14)

The generalized eigenvalues for multiplicities can be found
by a standard Jordan canonical form [16]. However, we try
to obtain a projection, Pi, from the reciprocal of the charac-
teristic equation in terms of a partial fraction expansion.

1.3 | Projection operators in PSA

In PSA, we can decompose A� into projections and nilpo-
tents, in accordance with the spectral theorem in (13). Let
A�, which is not symmetric, have distinct eigenvalues, and
each projection operator becomes the product of an eigen-
vector vi and some unit vector ri such that

Pi ¼ vi � rTi (15)

and if the original covariance matrix AK is square (m = n),
it can be represented by a dyadic form,

AK ¼ UΣVT ¼ ∑
n

i¼1
σiuivTi : (16)

Let A� be symmetric, then nilpotent operators become zero
and it is straightforward to determine ri = vi, an orthonor-
mal eigenvector. PSA will simply become PCA, solving
for eigenvalue-eigenvector pairs. In general, if A� is not
symmetric but square, the eigenvectors are not necessarily
orthogonal, but those composed of linearly independent
and dependent components. The mathematical background
of PSA will be presented in the next section.

2 | MATHEMATICAL BACKGROUND
OF PROJECTION SPECTRAL
ANALYSIS

The characteristic polynomial of A� is represented as

ΔA� ðλÞ ¼ detðλI � A�Þ ¼
Yκ
k¼1

ðλ� λkÞmk (17)

where mk is the multiplicity order. If λ is replaced by A�,
from the Cayley-Hamilton theorem [16], it is known that
ΔA� ðA�Þ ¼ 0. Now, a polynomial pi(λ) is defined as

piðλÞ¼Δ
Yκ

k¼1;k≠i
ðλ� λkÞmk (18)

and the reciprocal of ΔA� ðλÞ is given by

1
ΔA� ðλÞ ¼ ∑

κ

i¼1

αiðλÞ
ðλ� λiÞmi

(19)

from a partial fraction expansion, and αi(λ) is the residual
equation of the order less than that of the denominator

polynomial. If we multiply ΔA� ðλÞ with both sides of (19),
the following identity can be found:

1 ¼ ∑
κ

i¼1
αiðλÞΔA� ðλÞ=ðλ� λiÞmi

¼ ∑
κ

i¼1
αiðλÞ

Yκ
k¼1

ðλ� λkÞmk=ðλ� λiÞmi

¼ ∑
κ

i¼1
αiðλÞpiðλÞ:

(20)

Here, we claim that (20) can be extended to a matrix equa-
tion, such that

I ¼ ∑
κ

i¼1
αiðA�ÞpiðA�Þ (21)

where piðA�Þ is defined as

piðA�Þ¼Δ
Yκ

k¼1;k≠i
ðA� � λkIÞmk : (22)

Therefore, the sum product of the residue αiðA�Þ and the
polynomial piðA�Þ becomes an identity matrix. The follow-
ing lemma also holds:

Lemma 1. [Spectral Theorem 1] A� is defined as
a real-value square matrix, and let a projection
matrix be Pi ∈Rn�n,

Pi ¼ αiðA�ÞpiðA�Þ ¼ αiðA�Þ
Yκ

k¼1;k≠i
ðA� � λkIÞmk : (23)

Then, the spectral theorem (13) is satisfied for any
real-value square matrix A�,

A� ¼ ∑
κ

i¼1
ðλiPi þ NiÞ (24)

with Ni ¼ NiðA�Þ ¼ PiðA� � λiIÞ, and (21) becomes

I ¼ ∑
κ

i¼1
Pi ¼ ∑

κ

i¼1
αiðA�ÞpiðA�Þ: (25)

Proof. A� can be represented as follows, by post-
multiplying A� with both sides of (21):

I � A� ¼ ∑
κ

i¼1
αiðA�ÞpiðA�Þ � A�

¼ ∑
κ

i¼1
αiðA�ÞpiðA�Þ � ðλiI þ A� � λiIÞ

¼ ∑
κ

i¼1
ðλiPi þ NiÞ;

(26)

Ni ¼ PiðA� � λiIÞ ¼ αiðA�ÞpiðA�ÞðA� � λiIÞ; (27)

because Pi ¼ αiðA�ÞpiðA�Þ. Now, equation (24) is
satisfied for any square matrix A�. □
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Remark. If there is a multiplicity (mi ≥ 2), the fact
that Ni ≠ 0 is obvious because of the linear depen-
dencies in mi eigenvectors of λi.

Lemma 2. [Spectral Theorem 2] If a square
matrix A� is real and symmetric, all nilpotents
become zeros, Ni = 0,∀i. Now, we know that (24)
simply becomes

A� ¼ ∑
κ

i¼1
λiPi: (28)

Here, the set of all Pi's is called the resolution of
identity, which satisfies (25).

Proof. It is easily found that Ni is also symmetric
because Ni ¼ PiðA� � λiIÞ. For any vectors x and y,
xTNiy = (Nix)

Ty is satisfied.

Now, suppose that Nmi�1
i ≠ 0, then Nmi

i ¼ 0, from the
property of nilpotency. The squared norm of Nmi�1

i x
becomes

kNm1�1
i xk2 ¼ ðNmi�1

i xÞTðNmi�1
i xÞ

¼ ðNmi
i xÞTðNmi�2

i xÞ ¼ 0:
(29)

Here, equation (29) contradicts the assumption that
Nmi�1
i ≠ 0. Therefore, Ni = 0 is the only solution, and the

spectral theorem states that A� ¼ ∑κ
i¼1 λiPi.

□

Remark. It is well-known that the eigenvalues are
real and distinct for a symmetric matrix A�, and the
associated eigenvectors are orthonormal.

Theorem 3. [Spectral Theorem 3] For any non-
linear function f(·), and for a symmetric matrix A�

that satisfies (28), f ðA�Þ may be rewritten by the
spectral decomposition theorem as follows:

f ðA�Þ ¼ ∑
κ

i¼1
f ðλiÞPi: (30)

λi is the ith real and distinct eigenvalue of A�. Pi is
described by Pi ¼ qiqTi , where qi is the ith ortho-
normal eigenvector of A� (A�vi ¼ λivi).

Proof. The proof is given in [1].
□

Now, let us consider a generalized projection theorem
that deals with nonsymmetric projection operators.

Theorem 4. [Projection Theorem] If A� is
non-symmetric with distinct eigenvalues, and if Pi is
composed of the product between a column vector
vi ∈Rn�1 and a row vector rTi ∈R1�n, such as

Pi ¼ vi � rTi ∈Rn�n: (31)

then, vi is the first principal component from the
orthogonalization of Pi with ||vi||2 = 1. Here, the
only non-zero eigenvalue μ of Pi is 1, and rTi vi ¼ 1.
All vi's are independent eigenvectors of A�. Now, let
vi be the ith column of V, then A� � V ¼ V � Λ.

Proof. Refer to [1] for the full proof. □

Whenever some eigenvalues are negligible and approxi-
mated to zero, the rank of A� can be reduced by using the
following theorem:

Theorem 5. [Reduction Theorem] Let a nonsym-
metric matrix be A�, with arbitrary eigenvalues. We
define V, R, �V, and �R as follows:

V ¼ ½v1j � � � jvκ�∈Rn�κ; R ¼
rT1
� � �
rTκ

2
64

3
75∈Rκ�n;

�V ¼ ½�v1j � � � j�v‘�∈Rn�‘; �R ¼
�rT1
� � �
�rT‘

2
64

3
75∈R‘�n

(32)

where ℓ = n − κ. Then, from Lemma 1 and Theo-
rem 4, A� becomes

A� ¼ V � Λ � R|fflfflfflffl{zfflfflfflffl}
lin: indep:

þ �V � �Λ � �Rþ N|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
lin: depend:

ðR � V ¼ IκÞ: (33)

Here, N ¼ ∑κ
i¼1 Ni, and V is a transformation oper-

ator of the independent eigenvectors. The diagonal
elements of �Λ are the eigenvalues of multiplicities. If
λκ ≅ 0 with multiplicity (mκ), and if the other eigen-
values are distinct, then equation (33) becomes

A�≅V � Λ � Rþ Nκ

≅Vr � Λr � Rr:
ðRr � Vr ¼ IrÞ (34)

Nκ is a nilpotent matrix, corresponding to multiple λκ =
0. The reduced eigenvalue matrix Λr ∈Rðκ�1Þ�ðκ�1Þ

may contain complex-conjugate eigenvalues, in which
the κth row and column elements of Λ are eliminated.
Similarly, Vr ∈Rn�ðκ�1Þ is the reduced V with the κth
column eliminated, while Rr ∈Rðκ�1Þ�n is a reduced
version of R in which the κth row is eliminated. For
symmetric A�, it is easy to prove that Rr ¼ VT

r .
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Proof. The proof is provided in [1].
□

Remark. It is well-known that ℓ = n − κ is the
number of pure extra multiplicities. In other words,
the number of independent components, κ, is sub-
tracted from the number of total multiplicities.
Therefore, the first term in (33) is composed of the
linearly independent components of A�, while the
second term is composed of the linearly dependent
components from the multiplicities or from the zero
eigenvalues. Finally, the third term N is the sum of
nilpotents from the multiplicities.

It will be discussed how PSA is a useful machine learn-
ing tool for encoding training data and decoding test data.

3 | LEARNING AND TESTING IN
PROJECTION SPECTRAL ANALYSIS

PSA is described as an extended class of PCA or ICA in
unsupervised learning, because the geometric structure of
the eigenvectors is not necessarily orthogonal, and if not,
A� is divided into linearly independent and dependent com-
ponents. Here, we consider general instances of correlation
or covariance matrices. If m ≥ n, A� ¼ AT

KAK , and the
rank is determined by κ = min(n, K), whereas, if m < n,
A� ¼ AKAT

K , and the rank is κ = min(m, K). This rank κ is
further reduced by using the reduction Theorem 2 or by
sorting the eigenvalues λi (the singular values σi) such that

λ1 � � � � � λr > 0; λrþ1 ∼ λn ≅ 0

ðσ1 � � � � � σr > 0; σrþ1 ∼ σn ≅ 0Þ (35)

where r ≤ κ. In these rank-deficient cases, A�vi ¼ λivi
ði ¼ 1 ∼ rÞ and the reduced left singular vectors are found
by ui = AKvi/σi if m ≥ n, while A*Tui = λiui (i = 1 ∼ r) and
the reduced right singular vectors are obtained by
vi ¼ AT

Kui=σi if m < n. Therefore, AK is represented by

AK ¼ Ur � Σr � VT
r ;

Ur ¼ ½u1ju2j � � � jur�∈Rm�r;

Vr ¼ ½v1jv2j � � � jvr�∈Rn�r:

(36)

Now, the weight vectors ωk or the weight matrix Ω are
computed by

ωk ¼ VT
r � xk ∈Rr�1 ðk ¼ 1 ∼ KÞ;

Ω ¼ VT
r � X ∈Rr�K :

(37)

The learning procedure of PSA is represented as
follows:

Learning (Encoding) in PSA

1. Provide input-hidden-output data triples xk, yk, and zk
(k = 1 ∼ K), and find the weights in the hidden and the
output layers, as follows:

Ak ¼ ððk � 1Þ=kÞAk�1 þ ð1=kÞykxTk ;
Wk ¼ ððk � 1Þ=kÞWk�1 þ ð1=kÞzkyTk :

(38)

2. Use (19), (23), and (27) to find λi, Pi, and Ni, respec-
tively, from the spectral theorem in (24), i.e.,

Pi ¼ αiðA�Þ
YL

k¼1;k≠i
ðA� � λkIÞmk ;

Ni ¼ PiðA� � λiIÞ:

3. Obtain vi and ri by solving Pi ¼ vi � rTi from the qr-decom-
position and the reduction theorem (34) or from the
reduced singular value decomposition (36) to obtain

A� ¼ Vr � Λr � Rr; AK ¼ Ur � Σr � VT
r :

4. Compute the weights {ωk} in (37), and store Ω.

Therefore, WK, the Haar wavelets yi's, the eigen-struc-
tures Ur, Σr, Vr (Vr, Λr, Rr), and the weights ωk's are stored
in the memory after the encoding procedure. Now, the test
procedure for PSA is represented as follows:

Testing (Decoding) in PSA

1. First, provide test input data x∈Rn

2. Obtain test weights, ω ¼ VT
r x∈RK � 1

3. For k = 1∼K,
• From the stored weights, ωk, compute the Euclidean

distance ρk,

ρk ¼ kω� ωkk2: (39)

4. Find an index k� of the minimum distance in {ρk} and
compute the output data z by using the weights in (2),

z ¼ WK � yk� (40)

5. Use softmax to obtain the probability values of z.

The Euclidean distance of ρk is the same as that of
‖x − xk‖2 if the eigenvalues of A� are distinct, since

kx� xkk22 ¼ ðω� ωkÞTVT
r R

T
r ðω� ωkÞ

¼ kω� ωkk22 ¼ ρk:
(41)
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Remark. Now, let A� have distinct eigenvalues
with multiple zero eigenvalues, then RrVr = Ir and it
is possible to search for the minimum index in a
lower dimension.

4 | INCREMENTAL LEARNING OF
PROJECTION SPECTRAL ANALYSIS

It is known that one drawback of learning in most neural
networks, such as deep belief networks, convolutional neu-
ral networks, and backpropagation networks, is that, when-
ever it is necessary to add new training data, we have to
perform the learning procedure again from the beginning
of the old training data. This is the main reason for incre-
mental learning of neural networks. We propose two meth-
ods of PSA incremental learning in this paper. The former
is incremental learning for a single incoming data, while
the latter is a similar incremental learning scheme for two
training data sets with arbitrary numbers of training data.

4.1 | Incremental learning for a single
incoming data

When updating the weights AK by using a single incoming
data, we start with equation (38),

ðk þ 1ÞAkþ1 ¼ kAk þ B; B ¼ ykþ1xTkþ1: (42)

If we consider an overdetermined case (m ≥ n), the singu-
lar value decompositions proceed as follows:

Akþ1 ¼ UΣVT ;AkV1 ¼ U1Σ1;BV2 ¼ U2Σ2: (43)

Let us define U2 = U1P and V2 = V1Q, where P and Q are
appropriate coordinate transformation matrices. If we sub-
stitute U2,V2 for BV2 = U2Σ2, then

BV1Q ¼ U1PΣ2 ! BV1 ¼ U1PΣ2QT

! B ¼ U1PΣ2QTVT
1 :

(44)

Equation (42) now becomes

ðk þ 1ÞAkþ1 ¼ kU1Σ1VT
1 þ U1PΣ2QTVT

1

¼ U1fkΣ1 þ PΣ2QTgVT
1 :

(45)

The next step is to find the singular value decomposition
of (kΣ1 + PΣ2Q

T)/(k + 1) and rearrange (45) such that

ðkΣ1 þ PΣ2QTÞ=ðk þ 1Þ ¼ U3Σ3VT
3

Akþ1 ¼ U1U3Σ3VT
3 V

T
1 :

(46)

Now, comparing the above equation with Ak+1 = UΣVT,
the followings are obtained:

U ¼ U1U3; Σ ¼ Σ3;V ¼ V1V3

where P ¼ UT
1U2; Q ¼ VT

1 V2:
(47)

It is noted that P∈Rm�m and Q∈Rn�n are generalized
rotational transformation matrices since their column vec-
tors are orthonormal to each other. In other representa-
tions, PTP ¼ UT

2U1UT
1U2 ¼ Im and QTQ ¼ VT

2 V1 VT
1 V2 ¼

In. Therefore, by using (46) and (47), the singular value
triples {U, Σ, V} of Ak+1(Ak+1 = UΣVT) are found.

4.2 | Incremental learning for combining two
incoming data sets

The next strategy is to combine two sets of training data
and to update the weights when the number of the next
data set BK2 is different from that of the first set AK1 . We
now assume two sets of correlation or covariance matrices,
AK1 and BK2 , the combined one CKðK ¼ K1 þ K2Þ, and an
interior division of AK1 and BK2 , as follows:

AK1 ¼
1
K1

∑
K1

i¼1
yixTi ; BK2 ¼

1
K2

∑
K1þK2

j¼K1þ1
yjxTj ;

CK ¼ 1
K

∑
K

k¼1
ykxTk ¼ 1

K
ðK1AK1 þ K2BK2Þ:

(48)

Let the three singular value decompositions be
AK1 ¼ U1Σ1VT

1 , BK2 ¼ U2Σ2VT
2 , andCK = UΣVT. Similarly,

P andQ are defined asU2 = U1P and V2 = V1Q, respectively,
which denote the generalized rotational transformation matri-
ces. From (49),

K1AK1 þ K2BK2 ¼ K1U1Σ1VT
1 þ K2U2Σ2VT

2

¼ K1U1Σ1VT
1 þ K2U1PΣ2QTVT

1

¼ U1ðK1Σ1 þ K2PΣ2QTÞVT
1

¼ KCK :

(49)

Now, ðK1Σ1 þ K2PΣ2QTÞ=K may be further applied to the
singular value decomposition since PΣ2Q

T is not diagonal
in general, as follows:

ðK1Σ1 þ K2PΣ2QTÞ=K ¼ U3Σ3VT
3 ;

CK ¼ UΣVT ¼ U1U3Σ3VT
3 V

T
1 :

(50)

Therefore, our new singular value triples are obtained,

U ¼ U1U3;Σ ¼ Σ3;V ¼ V1V3

where P ¼ UT
1U2;Q ¼ VT

1 V2
(51)

and it is possible to update the weights of PSA by using
(50) and (51), even if the number of incoming training
data is different from that of the existing one already
stored.
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5 | SIMULATION RESULTS OF
BENCHMARK DBs

The experiments on PSA have also been conducted in this
section, where benchmark DBs such as MNIST and
CIFAR-10 are used to evaluate the performance of PSA, to
which the reduction theorem and the incremental learning
algorithm are applied. Here, a design parameter, the toler-
ance of zero eigenvalues, in the reduction procedure, is
defined as ε, for example, ε = 10−5. Therefore, each reduc-
tion eliminates the corresponding column vector in Ur

(under‐determined) or Vr(over‐determined) in (36), when
one diagonal element of Σr is reduced. The associated
Vr(under‐determined) or Ur(over‐determined) is obtained by
(6) or (11), respectively. With incremental learning from
(50) and (51), the size of each partition for additional train-
ing data is selected as K2 ¼ 1;000 ∼ 10;000 per evaluation.
Therefore, 6 or 5 incremental procedures are required for
training MNIST or CIFAR-10 data, respectively, and it is
not necessary to recompute from the starting point, as there
are more incoming data for learning.

Table 1 shows the recognition rates and standard devia-
tions of PSA for MNIST and CIFAR-10 DBs. In the first
row, the number of training data starts from 6,000 and
5,000 for MNIST and CIFAR-10, respectively, and the size
of training data increases by 5,000 in both cases, up to the
full size of 60,000 and 50,000, respectively. The ratio 5:1
holds for the sizes of training and test data. In each
instance of experiments with 100 trials, test data are ran-
domly chosen from the test batch, with size 10,000 in both
cases.

Graphical representations of the experimental results of
test data are shown in Figures 2 and 3, where the best
recognition rates are 96.9% for MNIST and 35.4% for
CIFAR-10, respectively. As shown in Figures 2 and 3, the
mean values from test results of MNIST tend to be

saturated asymptotically towards a limit, while those values
are linearly increasing from test results of CIFAR-10,
which means that the performance of PSA could be
improved if more training data are available.

6 | CONCLUSIONS AND
DISCUSSION

PSA is refined and upgraded in this paper by using the
singular value decomposition of arbitrary input-output
data with the prescribed hidden data, and the spectral
theorems with the mathematical background of the eigen-
structures, projections, and nilpotents. Even when it is
applied to nonsymmetric correlation or covariance matri-
ces, PSA is useful and effective with numerical stability
and robustness. For symmetric matrices, PSA is equiva-
lent to PCA, while it becomes equivalent to ICA for
nonsymmetric cases. Therefore, PSA is a unified
approach to both PCA and ICA.

Recent works on ICA include causal analysis in a struc-
tural equation model [17], group ICA for three-way data
[18], and improved estimation of basic linear mixing [19].
When a nonsymmetric covariance is encountered, we can
decompose A� into geometrically meaningful components,
the linearly independent component, and the other linearly
dependent ones. If the eigenvalues are distinct except for
multiple zero eigenvalues, the rank is further reduced by
excluding the multiple zero eigenvalues.

Moreover, two methods of incremental learning are also
investigated in order to subsequently continue to update the
weights of PSA without losing the previously stored infor-
mation. This incremental learning is also applied to the
experiments of benchmark DBs, such as MNIST and
CIFAR-10. Therefore, PSA is a useful tool of neural net-
works, and it may be not only combined with

TABLE 1 PSA test results: means and standard deviations in MNIST vs. CIFAR-10

MNIST CIFAR-10

#Train : #Test Mean SD #Train : #Test Mean SD

6,000 : 1,000 93.79% 0.686% 5,000 : 1,000 28.35% 1.017%

12,000 : 2,000 94.99% 0.431% 10,000 : 2,000 29.36% 0.726%

18,000 : 3,000 95.47% 0.416% 15,000 : 3,000 30.17% 0.611%

24,000 : 4,000 95.87% 0.253% 20,000 : 4,000 30.99% 0.541%

30,000 : 5,000 96.25% 0.192% 25,000 : 5,000 31.68% 0.426%

36,000 : 6,000 96.41% 0.133% 30,000 : 6,000 32.50% 0.347%

42,000 : 7,000 96.74% 0.131% 35,000 : 7,000 33.14% 0.317%

48,000 : 8,000 96.75% 0.103% 40,000 : 8,000 33.91% 0.286%

54,000 : 9,000 96.77% 0.048% 45,000 : 9,000 34.67% 0.206%

60,000 : 10,000 96.91% 0.000% 50,000 : 10,000 35.40% 0.000%
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convolutional neural networks, but it could also be used
for a number of practical applications, such as image detec-
tion, tracking, and recognition.
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