• Title/Summary/Keyword: progressive modeling

Search Result 101, Processing Time 0.03 seconds

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

Progressive collapse resistance of flat slabs: modeling post-punching behavior

  • Mirzaeia, Yaser;Sasani, Mehrdad
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.351-375
    • /
    • 2013
  • Post-punching resistance of a flat slab can help redistribute the gravity loads and resist progressive collapse of a structure following initial damage. One important difficulty with accounting for the post-punching strength of a slab is the discontinuity that develops following punching shear. A numerical simulation technique is proposed here to model and evaluate post-punching resistance of flat slabs. It is demonstrated that the simulation results of punching shear and post-punching response of the model of a slab on a single column are in good agreement with corresponding experimental data. It is also shown that progressive collapse due to a column removal (explosion) can lead to punching failure over an adjacent column. Such failure can propagate throughout the structure leading to the progressive collapse of the structure. Through post-punching modeling of the slab and accounting for the associated discontinuity, it is also demonstrated that the presence of an adequate amount of integrity reinforcement can provide an alternative load path and help resist progressive collapse.

Development of Adjust Plate Progressive Die (자동차용 Adjust Plate Progressive 금형 개발)

  • Bae, Yong-Hwan;Ban, Gab-Su
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.1-4
    • /
    • 2002
  • A automatic production system was developed for high productivity and safety. The semi-progressive die was unfavorable for more productivity, safety, material extravagance and incongruent high-speed production. Developed progressive die is suitable for the high production and guarantee triple production by acceptance of three array type for automobile adjust plate. We adopt Pro-$Engineer{\circledr}$ for three dimensional computer aided design suitable for the disassembly and assembly evaluation. The conclusion of this study is as follow. First, press die parts solid modeling system is built by using Pro-$Engineer{\circledr}$ through this research and verified allowable tolerance and possibility of assembly and disassembly of parts. Therefore we can reduce die manufacturing time and cost. Second, We produce 1000 units pet hot coil 1ton by traditional method, but we can acomplish material saving effect about 12% as 120 units in case of new progressive die. Fourth, we acomplished manufacturing cost curtailment effect more than 20% in comparison with traditional method.

Reduced Degree of Freedom Modeling for Progressive Collapse Analysis of Tall Buildings using Applied Element Method (응용 요소법을 이용한 초고층 건물의 축소 모델링 연쇄붕괴 해석)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.599-606
    • /
    • 2014
  • Since progressive collapse of tall buildings can cause enormous damage, it should be considered during the design phase of tall buildings. The progressive collapse analysis of tall buildings using finite element methods is almost impossible due to the vast amount of computing time. In this paper, applied element method was evaluated as an alternative to the finite element method. Reduced DOFs modeling technique was proposed to enable the progressive collapse analysis of tall buildings. The reduced DOFs model include only the part which is subjected to direct damage from blast load and the structural properties such as mass, transferred load and stiffness of excluded parts are accumulated into the top story of the reduced DOFs model. The proposed modeling technique was applied to the progressive collapse analysis of 20-story RC building using three collapse scenarios. The reduced DOFs model showed similar collapse behavior to the whole model while the computing time was reduced by 30%. The proposed modeling technique can be utilized in the progressive collapse analysis of tall buildings due to abnormal loads.

Modeling for Prediction of Potato Late Blight (Phytophthora infestans) (감자역병 진전도 예측모형 작성)

  • 안재훈;함영일;신관용
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.331-338
    • /
    • 1998
  • To develop the model for prediction of potato late blight progress, the relationship between severity index of potato late blight transformed by the logit and Gompit transformation function and cumulative severity value (CSV) processing weather data during growing period in Taegwallyeong alpine area, 1975 to 1992 were examined. When logistic model and Gompertz model were compared by determining goodness of fit for progressive degree of late blight using CSV as independent variable, the coefficients of determination were higher as 0.742 in the logistic model than 0.680 in the Gompertz model. Parameters in logistic model were composed of progressive rate and initial value of logistic model. Initial value was calculated in -3.664. The progressive rate of potato late blight was 0.137 in cv. Superior, 0.136 in cv. Irish Cobbler, and 0.070 in cv. Jopung without fungicide sprays. According to in crease of the number of spray times the progressive rate was lowered, was 0.020 in cv. Superior under the conventional program of fungicide sprays, 10 times sprays during cropping season. Equation of progressive rate, b1=0.0088 ACSV-0.033 (R2=0.976), was written by examining the relationship between the parameters of progressive rate of late blight and the average CSV (ACSV) quantifing weather information. By estimating parameters of logistic function, model able to describe the late blight progress of potato, cv. Superior was formulated in Y=4/(1+39.0·exp((0.0088 ACSV-0.033)·CSV).

  • PDF

Modeling of Progressive Failure in Concrete using Discontinuous Finite Elements (불연속 요소를 사용한 콘크리트 파괴진행의 유한요소 모델링)

  • Shim, Byul;Song, Ha-Won;Byun, Keun-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.247-252
    • /
    • 1996
  • In the concrete structures, cracks occur in various causes and the cracks seriously affect the functions of structures. The analysis techniques of progressive crack in the concrete have been improved with the advance of numerical techniques. The discrete crack model used in finite element program for the analysis of progressive failure is very effective, but it can not be easily implemented into numerical procedures because of difficult handing of nodal points in finite element meshes for crack growth. This paper introduces one of the techniques which skips the difficulty. In this paper, the modeling of progressive failure using finite element formulation is explained for the analysis of concrete fracture. The discontinuous element using the discontinuous shape function and the dual mapping technique in the numerical integration are implemented into finite element code for this purpose. It is shown that developed finite element program can predict the quasi-brittle behavior of concrete including ultimate load. The comparisons of the analysis results with other data are also shown.

  • PDF

Study on Strain Localization and Progressive Failure of Concrete (콘크리트의 변형률 국소화 및 진행성 파괴에 관한 연구)

  • 송하원;김형운;우승민
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.181-192
    • /
    • 1999
  • The progressive failure following strain localization in concrete can be analyzed effectively using finite element modeling of fracture process zone of concrete with a finite element embedded discontinuity. In this study, a finite element with embedded discontinuous line is utilized for the analysis of progressive failure in concrete. The finite element with embedded discontinuity is a kind of discrete crack element, but the difficulties in discrete crack approach such as remeshing or adding new nodes along with crack growth can be avoided. Using a discontinuous shape function for this element, the displacement discontinuity is embedded within an element and its constitutive equation is modeled from the modeling of fracture process zone. The element stiffness matrix is derived and its dual mapping technique for numerical integration is employed. Then, a finite element analysis program with employed algorithms is developed and failure analysis results using developed finite element program are verified through the comparison with experimental data and other analysis results.

A Research on the Development of the 3-dimensional Design Automation System for Progressive Die (Progressive 금형의 3차원 설계 자동화시스템의 개발에 관한 연구)

  • 김대영;성창영;이재원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.303-306
    • /
    • 2000
  • This paper describes a research on the development of the 3D design automation system for progressive die. Based on knowledge base of expert, this system can carry out design tasks, such as feature recognition of product data, layout design, dre set component design. Easy system user mterface and 3-dlmensional solid modeling could result in time and cost saving.

  • PDF

Development of Progressive Collapse Analysis Program considering Dynamic Effects (동적효과를 고려한 연쇄붕괴해석 프로그램의 개발)

  • Kim, Jin-Koo;Park, Jun-Hee;An, Da-Woon;Kim, Hyun-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.771-776
    • /
    • 2007
  • Widespread propagation of failure can be triggered by localized damage to a structure because of fires, impact and explosion etc. In this paper, the progressive collapse analysis program is developed to automatically check the failed members and construct the modified structural model at each step. OpenSees, that is widely used in many research groups, was used for the developed progressive collapse analysis control program. The control program developed in this study automatically computes the damage indices of all the structural members and performance a progressive collapse analysis after the first failed member is selected. Using the developed program, we compared the progressive collapse behaviors of the example structures considering dynamic effects or not, and the difference of progressive collapse mechanism according to the modeling method of the failed members.

  • PDF

The influence of production inconsistencies on the functional failure of GRP pipes

  • Rafiee, Roham;Fakoor, Mahdi;Hesamsadat, Hadi
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1369-1379
    • /
    • 2015
  • In this study, a progressive damage modeling is developed to predict functional failure pressure of GRP pipes subjected to internal hydrostatic pressure. The modeling procedure predicts both first-ply failure pressure and functional failure pressure associated with the weepage phenomenon. The modeling procedure is validated using experimental observations. The random parameters attributed to the filament winding production process are identified. Consequently, stochastic simulation is conducted to investigate the influence of induced inconsistencies on the functional failure pressures of GRP pipes. The obtained results are compared to realize the degree to which random parameters affect the performance of the pipe in operation.