Browse > Article
http://dx.doi.org/10.12989/scs.2015.19.6.1369

The influence of production inconsistencies on the functional failure of GRP pipes  

Rafiee, Roham (Faculty of New Sciences and Technologies, University of Tehran)
Fakoor, Mahdi (Faculty of New Sciences and Technologies, University of Tehran)
Hesamsadat, Hadi (Faculty of New Sciences and Technologies, University of Tehran)
Publication Information
Steel and Composite Structures / v.19, no.6, 2015 , pp. 1369-1379 More about this Journal
Abstract
In this study, a progressive damage modeling is developed to predict functional failure pressure of GRP pipes subjected to internal hydrostatic pressure. The modeling procedure predicts both first-ply failure pressure and functional failure pressure associated with the weepage phenomenon. The modeling procedure is validated using experimental observations. The random parameters attributed to the filament winding production process are identified. Consequently, stochastic simulation is conducted to investigate the influence of induced inconsistencies on the functional failure pressures of GRP pipes. The obtained results are compared to realize the degree to which random parameters affect the performance of the pipe in operation.
Keywords
composite pipes; functional failure; progressive modeling; stochastic analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 ANSI/AWWA C950 (2001), Standard for fiberglass pressure pipe, American Water Works Association, Denver, CO, USA.
2 ASTM D 3171 (2006), Standard test methods for constituent contents of composite materials, American Society for Testing and Materials.
3 AWWA manual M45 (2005), Fiberglass pipe design, (2nd Edition), American Water Works Association, Denver, CO, USA.
4 Chang, R.R. (2000), "Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels", Compos. Struct., 49(2), 237-243.   DOI
5 Chamis, C.C. (1989), "Mechanics of composite materials: Past, present, and future", J. Compos. Technol. Res. ASTM, 11(1), 3-14.   DOI
6 Cohen, D. (1997), "Influence of filament winding parameters on composite vessel quality and strength", Compos. Part A-Appl. S., 28(12), 1035-1047.   DOI
7 Ellyin, F., Carroll, M., Kujawski, D. and Chiu, A.S. (1997), "The behavior of multidirectional filament wound fibreglass/epoxy tubulars under biaxial loading", Compos. Part A-Appl. S., 28(9-10), 781-790.   DOI
8 Hollaway, L.C. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24(12), 2419-2445.   DOI
9 Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method, John Wiley Publisher Science, New York, NY, USA.
10 Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2012), "Structural and functional failure pressure of filament wound composite tubes", Mater. Des., 36, 779-787.   DOI
11 Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2013), "The effect of stress ratio on the fracture morphology of filament wound composite tubes", Mater. Des., 49, 471-484.   DOI
12 Meijer, G. and Ellyin, F. (2006), "A failure envelope for ${\pm}60$ filament wound glass fiber reinforced epoxy tubular", Compos. Part A-Appl. S., 39(3), 555-564.
13 Noh, H.-C. (2011b), "A formulation for stochastic finite element analysis of plate structures with uncertain Poisson's ratio", Comput. Methods Appl. Mech. Eng., 193(45-47), 4857-4873.   DOI
14 Melo, J.D.D., Neto, F.L., Barros, G.A. and Masquita, F.N.A. (2010), "Mechanical behavior of GRP pressure pipes with addition of quarts sand filler", J. Compos. Mater., 45(6), 717-726.   DOI
15 Ngah, M. and Young, A. (2007), "Application of the spectral stochastic finite element method for performance prediction of composite structures", Compos. Struct., 78(3), 447-456.   DOI
16 Noh, H.-C. (2011a), "Stochastic finite element analysis of composites plates considering spatial randomness of material properties and their correlations", Steel Compos. Struct., Int. J., 11(2), 115-130.   DOI
17 Onkar, A., Upadhyay, C. and Yadav, D. (2007), "Probabilistic failure of laminated composite plates using the stochastic finite element method", Compos. Struct., 77(1), 79-91.   DOI
18 Rafiee, R. and Amini, A. (2014), "Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced pipes", Comp. Mater. Sci., 96(B), 579-588. DOI: 10.1016/j.commatsci.2014.03.036   DOI
19 Rafiee, R. and Reshadi, F. (2014), "Simulation of functional failure in GRP mortar pipes", Compos. Struct., 113, 155-163.   DOI
20 Rousseau, J., Perreux, D. and Verdiere, N. (1999), "The influence of winding patterns on the damage behaviour of filament-wound pipes", Compos. Sci. Technol., 59(9), 1439-1449.   DOI
21 Shokrieh, M. and Lessard, L.B. (2000), "Progressive fatigue damage modeling of composite materials, Part I: Modeling", J Compos. Mater., 34(13), 1056-1080.   DOI
22 Tsai, S.W., Hoa, S.V. and Gay, D. (2003), Composite Materials, Design and Applications, CRC Press, New York, NY, USA.
23 Tarakcioglu, N., Akdemir, A. and Avci, A. (2001), "Strength of filament wound GRP pipes with surface crack", Compos. Part B-Eng., 32(2), 131-138.   DOI
24 Tee, K.F., Khan, R.K. and Chen, H.P. (2013), "Probabilistic failure analysis of underground flexible pipes", Struct. Eng. Mech., Int. J., 47(2), 167-183.   DOI