DOI QR코드

DOI QR Code

The influence of production inconsistencies on the functional failure of GRP pipes

  • Rafiee, Roham (Faculty of New Sciences and Technologies, University of Tehran) ;
  • Fakoor, Mahdi (Faculty of New Sciences and Technologies, University of Tehran) ;
  • Hesamsadat, Hadi (Faculty of New Sciences and Technologies, University of Tehran)
  • Received : 2014.10.13
  • Accepted : 2015.06.07
  • Published : 2015.12.25

Abstract

In this study, a progressive damage modeling is developed to predict functional failure pressure of GRP pipes subjected to internal hydrostatic pressure. The modeling procedure predicts both first-ply failure pressure and functional failure pressure associated with the weepage phenomenon. The modeling procedure is validated using experimental observations. The random parameters attributed to the filament winding production process are identified. Consequently, stochastic simulation is conducted to investigate the influence of induced inconsistencies on the functional failure pressures of GRP pipes. The obtained results are compared to realize the degree to which random parameters affect the performance of the pipe in operation.

Keywords

References

  1. ANSI/AWWA C950 (2001), Standard for fiberglass pressure pipe, American Water Works Association, Denver, CO, USA.
  2. ASTM D 3171 (2006), Standard test methods for constituent contents of composite materials, American Society for Testing and Materials.
  3. AWWA manual M45 (2005), Fiberglass pipe design, (2nd Edition), American Water Works Association, Denver, CO, USA.
  4. Chang, R.R. (2000), "Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels", Compos. Struct., 49(2), 237-243. https://doi.org/10.1016/S0263-8223(99)00133-6
  5. Chamis, C.C. (1989), "Mechanics of composite materials: Past, present, and future", J. Compos. Technol. Res. ASTM, 11(1), 3-14. https://doi.org/10.1520/CTR10143J
  6. Cohen, D. (1997), "Influence of filament winding parameters on composite vessel quality and strength", Compos. Part A-Appl. S., 28(12), 1035-1047. https://doi.org/10.1016/S1359-835X(97)00073-0
  7. Ellyin, F., Carroll, M., Kujawski, D. and Chiu, A.S. (1997), "The behavior of multidirectional filament wound fibreglass/epoxy tubulars under biaxial loading", Compos. Part A-Appl. S., 28(9-10), 781-790. https://doi.org/10.1016/S1359-835X(97)00021-3
  8. Hollaway, L.C. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062
  9. Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method, John Wiley Publisher Science, New York, NY, USA.
  10. Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2012), "Structural and functional failure pressure of filament wound composite tubes", Mater. Des., 36, 779-787. https://doi.org/10.1016/j.matdes.2011.11.029
  11. Martins, L.A.L., Bastian, F.L. and Netto, T.A. (2013), "The effect of stress ratio on the fracture morphology of filament wound composite tubes", Mater. Des., 49, 471-484. https://doi.org/10.1016/j.matdes.2013.01.026
  12. Meijer, G. and Ellyin, F. (2006), "A failure envelope for ${\pm}60$ filament wound glass fiber reinforced epoxy tubular", Compos. Part A-Appl. S., 39(3), 555-564.
  13. Melo, J.D.D., Neto, F.L., Barros, G.A. and Masquita, F.N.A. (2010), "Mechanical behavior of GRP pressure pipes with addition of quarts sand filler", J. Compos. Mater., 45(6), 717-726. https://doi.org/10.1177/0021998310385593
  14. Ngah, M. and Young, A. (2007), "Application of the spectral stochastic finite element method for performance prediction of composite structures", Compos. Struct., 78(3), 447-456. https://doi.org/10.1016/j.compstruct.2005.11.009
  15. Noh, H.-C. (2011a), "Stochastic finite element analysis of composites plates considering spatial randomness of material properties and their correlations", Steel Compos. Struct., Int. J., 11(2), 115-130. https://doi.org/10.12989/scs.2011.11.2.115
  16. Noh, H.-C. (2011b), "A formulation for stochastic finite element analysis of plate structures with uncertain Poisson's ratio", Comput. Methods Appl. Mech. Eng., 193(45-47), 4857-4873. https://doi.org/10.1016/j.cma.2004.05.007
  17. Onkar, A., Upadhyay, C. and Yadav, D. (2007), "Probabilistic failure of laminated composite plates using the stochastic finite element method", Compos. Struct., 77(1), 79-91. https://doi.org/10.1016/j.compstruct.2005.06.006
  18. Rafiee, R. and Amini, A. (2014), "Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced pipes", Comp. Mater. Sci., 96(B), 579-588. DOI: 10.1016/j.commatsci.2014.03.036
  19. Rafiee, R. and Reshadi, F. (2014), "Simulation of functional failure in GRP mortar pipes", Compos. Struct., 113, 155-163. https://doi.org/10.1016/j.compstruct.2014.03.024
  20. Rousseau, J., Perreux, D. and Verdiere, N. (1999), "The influence of winding patterns on the damage behaviour of filament-wound pipes", Compos. Sci. Technol., 59(9), 1439-1449. https://doi.org/10.1016/S0266-3538(98)00184-5
  21. Shokrieh, M. and Lessard, L.B. (2000), "Progressive fatigue damage modeling of composite materials, Part I: Modeling", J Compos. Mater., 34(13), 1056-1080. https://doi.org/10.1177/002199830003401301
  22. Tarakcioglu, N., Akdemir, A. and Avci, A. (2001), "Strength of filament wound GRP pipes with surface crack", Compos. Part B-Eng., 32(2), 131-138. https://doi.org/10.1016/S1359-8368(00)00037-8
  23. Tee, K.F., Khan, R.K. and Chen, H.P. (2013), "Probabilistic failure analysis of underground flexible pipes", Struct. Eng. Mech., Int. J., 47(2), 167-183. https://doi.org/10.12989/sem.2013.47.2.167
  24. Tsai, S.W., Hoa, S.V. and Gay, D. (2003), Composite Materials, Design and Applications, CRC Press, New York, NY, USA.

Cited by

  1. On The Stiffness Prediction of GFRP Pipes Subjected to Transverse Loading pp.1976-3808, 2018, https://doi.org/10.1007/s12205-018-2003-5
  2. 考虑自增强影响的III 型复合材料气瓶连续损伤模拟及渐进失效分析 vol.20, pp.1, 2019, https://doi.org/10.1631/jzus.A1800152
  3. Numerical and Experimental Analyses of the Hoop Tensile Strength of Filament-Wound Composite Tubes vol.56, pp.4, 2020, https://doi.org/10.1007/s11029-020-09894-2
  4. Numerical and Experimental Investigation of the Burst Resistance of Glass-Fiber Thermoplastic Composite Pipes under Internal Pressure vol.57, pp.2, 2021, https://doi.org/10.1007/s11029-021-09946-1