DOI QR코드

DOI QR Code

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana (Department of Civil and Environmental Engineering, University of California) ;
  • Shan, Li (Department of Civil and Environmental Engineering, University of California) ;
  • Kunnath, Sashi K. (Department of Civil and Environmental Engineering, University of California)
  • Received : 2015.10.29
  • Accepted : 2016.01.09
  • Published : 2016.03.30

Abstract

The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. ACI. (2014). Building code requirements for structural concrete. ACI 318-14. Farmington Hills, MI: American Concrete Society.
  2. Alashker, Y., Li, H., & El-Tawil, S. (2011). Approximations in progressive collapse modeling. Journal of Structural Engineering, 137(Special Issue: Commemorating 10 Years of Research Since 9/11), 914-924. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000452
  3. Arora, J. S., Haskell, D. F., & Govil, A. K. (1980). Optimal design of large structures for damage tolerance. AIAA Journal, 18(5), 563-570. https://doi.org/10.2514/3.7669
  4. ASCE. (2010). Minimum design loads for buildings and other structures. ASCE-7, 2010. Reston, VA: American Society of Civil Engineers.
  5. Bao, Y., & Kunnath, S. K. (2010). Simplified progressive collapse simulation of RC frame-wall structures. Engineering Structures, 32(10), 3153-3162. https://doi.org/10.1016/j.engstruct.2010.06.003
  6. Bao, Y., Kunnath, S., El-Tawil, S., & Lew, H. (2008). Macromodel-based simulation of progressive collapse: RC frame structures. Journal of Structural Engineering, 134(7), 1079-1091. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1079)
  7. Bao, Y., Lew, H. S., & Kunnath, S. K. (2014). Modeling of reinforced concrete assemblies under column-removal scenario. Journal of Structural Engineering, 140(1), 04013027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000778
  8. Dusenberry, D., & Hamburger, R. (2006). Practical means for energy-based analyses of disproportionate collapse potential. Journal of Performance of Constructed Facilities, 20, 336-348. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(336)
  9. El-Tawil, S., Li, H., & Kunnath, S. (2014). Computational simulation of gravity-induced progressive collapse of steelframe buildings: Current trends and future research needs. Journal of Structural Engineering, 140(8), A2513001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000897
  10. Gomes, A., & Appleton, J. (1997). Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling. Engineering Structures, 19(10), 822-826. https://doi.org/10.1016/S0141-0296(97)00166-1
  11. Gross, J. L., & McGuire, W. (1983). Progressive collapse resistant design. Journal of Structural Engineering, 109, 1-15. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(1)
  12. Hallquist, J. (2007). LS-DYNA keyword user's manual. Livermore, CA: Livermore Software Technology Corporation.
  13. Jeong, J.-P., & Kim, W. (2014). Shear resistant mechanism into base components: Beam action and arch action in shearcritical RC members. International Journal of Concrete Structures and Materials, 8(1), 1-14. https://doi.org/10.1007/s40069-013-0064-x
  14. Kaewkulchai, G., & Williamson, E. B. (2004). Beam element formulation and solution procedure for dynamic progressive collapse analysis. Computers and Structures, 82(7-8), 639-651. https://doi.org/10.1016/j.compstruc.2003.12.001
  15. Khandelwal, K., & El-Tawil, S. (2007). Collapse behavior of steel special moment resisting frame connections. Journal of Structural Engineering, 133(5), 646-655. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(646)
  16. Kim, H. S., Kim, J., & An, D. W. (2009). Development of integrated system for progressive collapse analysis of building structures considering dynamic effects. Advances in Engineering Software, 40(1), 1-8. https://doi.org/10.1016/j.advengsoft.2008.03.011
  17. Krauthammer, T., Hall, R. L., Woodson, S. C., Baylot, J. T., Hayes, J. R., & Sohn, Y. (2003). Development of progressive collapse analysis procedure and condition assessment for structures. In National workshop on prevention of progressive collapse. Washington, DC: Multihazard Mitigation Council of the National Institute of Building Sciences.
  18. Kwasniewski, L. (2010). Nonlinear dynamic simulations of progressive collapse for a multistory building. Engineering Structures, 32(5), 1223-1235. https://doi.org/10.1016/j.engstruct.2009.12.048
  19. Lewicki, B., & Olesen, S. O. (1974). Limiting the possibility of progressive collapse. Building Research and Practice, 2(1), 10-13. https://doi.org/10.1080/09613217408550280
  20. Li, H., & El-Tawil, S. (2014). Three-dimensional effects and collapse resistance mechanisms in steel frame buildings. Journal of Structural Engineering, 140(8), A4014017. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000839
  21. Li, Y., Lu, Z., Guan, H., & Ye, L. (2014). Progressive collapse resistance demand of reinforced concrete frames under catenary mechanism. ACI Structural Journal, 111, 433-439.
  22. Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  23. Marjanishvili, S., & Agnew, E. (2006). Comparison of various procedures for progressive collapse analysis. Journal of Performance of Constructed Facilities, 20, 365-374. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(365)
  24. McConnel, R. E., & Kelly, S. J. (1983). Structural aspects of progressive collapse of warehouse racking. Engineering Structures, 61A(11), 343-347.
  25. Nurhuda, I., & Lie, H. A. (2004). Three dimensionally analysis of flat plate structures by equivalent grid method. In 29th Conference on our world in concrete and structures, 25-26 August 2004, Singapore.
  26. OpenSees. (2015). Open system for earthquake engineering simulation. Berkeley, CA: University of California. Retrieved March 4, 2015, from http://opensees.berkeley.edu/.
  27. Pearson, C., & Delatte, N. (2005). Ronan point apartment tower collapse and its effect on building codes. Journal of Performance of Constructed Facilities, 19(5), 172-177. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:2(172)
  28. Ruth, P., Marchand, K., & Williamson, E. (2006). Static equivalency in progressive collapse alternate path analysis:Reducing conservatism while retaining structural integrity. Journal of Performance of Constructed Facilities, 20, 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
  29. Sasani, M., Kazemi, A., Sagiroglu, S., & Forest, S. (2011). Progressive collapse resistance of an actual 11-story structure subjected to severe initial damage. Journal of Structural Engineering, ASCE, 137(9), 893-902. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000418
  30. Sasani, M., & Kropelnicki, J. (2008). Progressive collapse analysis of an RC structure. The Structural Design of Tall and Special Buildings, 17, 757-771. https://doi.org/10.1002/tal.375
  31. Scott, B. D., Park, R., & Priestley, M. J. N. (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates. Journal of the American Concrete Institute, 79, 13-27.
  32. Tian, Y., Chen, J., Said, A., & Zhao, J. (2012). Nonlinear modeling of flat-plate structures using grid beam elements. Computers and Concrete, 10(5), 489-505. https://doi.org/10.12989/cac.2012.10.5.489
  33. Xiao, Y., Kunnath, S. K., Li, F. W., Zhao, Y. B., Lew, H. S., & Bao, Y. (2015). Collapse test of a 3-story 3-span half-scale RC frame building. ACI Structural Journal, 112(4), 429-438.
  34. Yi, W.-J., He, Q.-F., Xiao, Y., & Kunnath, S. K. (2008). Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures. ACI Structural Journal, 105(4), 433-439.
  35. Yi, W.-J., Zhang, F. Z., & Kunnath, S. K. (2014). Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering. doi:10.1061/(ASCE)ST.1943-541X.0000963.
  36. Yu, M., Zha, X., & Ye, J. (2010). The influence of joints and composite floor slabs on effective tying of steel structures in preventing progressive collapse. Journal of Constructional Steel Research, 66(3), 442-451. https://doi.org/10.1016/j.jcsr.2009.10.008

Cited by

  1. Analysing Vibrations of Dissipative Structures with Connection Disruption vol.262, pp.None, 2016, https://doi.org/10.1088/1757-899x/262/1/012223
  2. Pull-Out Behaviour of Hooked End Steel Fibres Embedded in Ultra-high Performance Mortar with Various W/B Ratios vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0193-8
  3. Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0198-3
  4. Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0201-z
  5. Seismic Performance of Exterior RC Beam–Column Joints Retrofitted using Various Retrofit Solutions vol.11, pp.3, 2016, https://doi.org/10.1007/s40069-017-0203-x
  6. Flexural, Compressive Arch, and Catenary Mechanisms in Pseudostatic Progressive Collapse Analysis vol.32, pp.1, 2016, https://doi.org/10.1061/(asce)cf.1943-5509.0001110
  7. Dynamic response analysis of steel frame with a sudden removal first floor column vol.34, pp.2, 2016, https://doi.org/10.3233/jifs-169407
  8. Experimental study of repaired RC columns subjected to uniaxial and biaxial horizontal loading and variable axial load with longitudinal reinforcement welded steel bars solutions vol.155, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2017.11.043
  9. Advances in Computational Simulation of Gravity-Induced Disproportionate Collapse of RC Frame Buildings vol.144, pp.2, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0001938
  10. Modelling of Stirrup Confinement Effects in RC Layered Beam Finite Elements Using a 3D Yield Criterion and Transversal Equilibrium Constraints vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0278-z
  11. CASCO: a simulator of load paths in 2D frames during progressive collapse vol.2, pp.9, 2016, https://doi.org/10.1007/s42452-020-03201-3
  12. Numerical studies on the progressive collapse resistance of multi-story RC buildings with and without exterior masonry walls vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.07.049
  13. Assessment of Building Robustness against Disproportionate Collapse vol.146, pp.12, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0002820
  14. Analysis of RC structures with different design mistakes under explosive based demolition vol.22, pp.3, 2016, https://doi.org/10.1002/suco.201900367
  15. Effect of progressive collapse of central column on the push-down response of two-span beam-column substructures vol.248, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2021.113119
  16. Evaluation and Enhancement of Robustness for Reinforced Concrete Buildings vol.148, pp.1, 2016, https://doi.org/10.1061/(asce)st.1943-541x.0003226