• Title/Summary/Keyword: processability

검색결과 172건 처리시간 0.036초

방사성폐기물 유리화 공정 및 유리고화체 특성 (Characteristics of Vitrification Process and Vitrified Form for Radioactive Waste)

  • Kim, Cheon-Woo;Kim, Ji-Yean;ChoI, Jong-Rak;Ji, Pyung-Kook;Park, Jong-Kil;Shin, Sang-Woon;Ha, Jong-Hyun;Song, Myung-Jae
    • 방사성폐기물학회지
    • /
    • 제2권3호
    • /
    • pp.175-180
    • /
    • 2004
  • In order to vitrify the combustible dry active waste (DAW) generated from Korean Nuclear Power Plants, a glass formulation development based on waste composition was performed. A borosilicate glass, DG-2, was formulated to vitrify the DAW in an induction cold crucible melter (CCM). The processability, product performance, and volume reduction effect of the candidate glass were evaluated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product of the glass product such as chemical durability, phase stability, and density was satisfactory. The vitrification process using the candidate glass was also evaluated assuming that it was operated as economically as possible.

  • PDF

Cellulose Diacetate/Starch 복합체의 제조 및 물성 (Preparation and Properties of Celluose Diacetate/Starch Composite)

  • 이상율;이승경;임환규;계형산;이영관
    • 폴리머
    • /
    • 제30권6호
    • /
    • pp.532-537
    • /
    • 2006
  • 최근 환경문제가 대두되면서 기존의 석유계 플라스틱을 대체할 생분해성 플라스틱에 관심이 고조되고 잇다. 이에 본 실험에서는 토양에서 생분해가 가능한 셀룰로오스 디아세테이트/전분 혼합체를 제조하여 그 특성을 연구하였다. 이 혼합체에 가소제로 트리아세틴을 첨가하여 용융가공한 복합체의 물성을 조사하였다. 전분의 함량이 증가할수록 이 복합체의 가공성이 향상되며 인장강도와 탄성률은 감소하고 신율은 증가하였다. 전분의 함량이 증가하면 복합체의 $T_g$는 감소하였다. SEM을 이용하여 전분의 복합체내에서의 분산성을 관찰하였다.

초고압 옥외용 실리콘 고무의 발수성 및 트래킹 특성 (Hydrophobicity and tracking resistance of SIR for outdoor Insulators)

  • 한동희;강동필;박효열;이광희;이기창;민경은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1560-1562
    • /
    • 2000
  • The paper reports on a study of the influence of the silicone oils on the tracking and erosion resistance and hydrophobicity of SIR. Two silicone oils(A, B) having different chemical structure were selected in consideration of goof hydrophobicity and processability. Tracking and erosion resistance of SIR was investigated by the rotating wheel dip test (RWDT). In this test tracking and erosion areas due to glow and partial arc discharges cause an increase in the leakage current with an increase in time. Leakage current of SIR was decreased with increasing ratio of oil A/B. SIR was exposed to corona discharges in air and the specimens were analyzed with contact angle. It was observed that the contact angle of SIR was increased gradually in time. The recovery of hydrophobicity was increased with increasing ratio of oil A/B.

  • PDF

Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications

  • Konys, J.
    • Corrosion Science and Technology
    • /
    • 제15권6호
    • /
    • pp.314-319
    • /
    • 2016
  • Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.

6시그마를 이용한 자동차 범퍼의 치수 최적화에 대한 연구 (A Study on Dimension Optimization of Injection-molded Automotive Bumper by Six Sigma)

  • 김주권;김종선;이준한;곽재섭
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.109-116
    • /
    • 2017
  • In this study, the optimization of the overall dimensions of an automobile bumper was investigated through CAE and experiment using the Six Sigma method and design of experiment (DOE) method, respectively. Injection pressure, injection speed, injection time, cooling time, holding time, injection temperature, and holding pressure were selected as the vital parameters affecting the overall width of product through analysis of trivial many using CAE. The optimal values were determined using the DOE method, and we analyzed the improvement by applying the optimal conditions to the production process. As a result, the mean value of the overall width was close to the target value, with a deviation of 0.05mm, and the processability and I-MR control were remarkably improved. Finally, the dimension pass rate of the product improved by 20%.

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.

Influence of Extender Oil on Properties of Solution Styrene-Butadiene Rubber Composites

  • Choi, Sung-Seen;Ko, Eunah
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.196-204
    • /
    • 2015
  • Crosslink density of a rubber vulcanizate determines the chemical and physical properties, while bound rubber is an important factor to estimate reinforcement of a filled rubber compound. Extender oil is added to a raw rubber with very high molecular weight for improving processability of a rubber composite. Influence of extender oil on crosslink density, bound rubber formation, and physical properties of solution styrene-butadiene rubber (SSBR) composites with differing microstructures was investigated. Crosslink densities of non-oil-extended SSBR (NO-SSBR) vulcanizates were higher than those of oil-extended SSBR (OE-SSBR) ones. Bound rubber contents of NO-SSBR compounds were also greater than those of OE-SSBR ones. The experimental results could be explained by interfering of extender oil. The OE-SSBR vulcanizates had low modulus but long elongation at break, whereas the NO-SSBR ones had high modulus but short elongation at break. It was found that the crosslink densities affected the physical properties more than the bound rubber contents. The moduli increased with increase in the crosslink density irrespective of extender oil, while the elongation at break decreased. Each variation of the tensile strengths of NO-SSBR and OE-SSBR vulcanizates with the crosslink density showed a decreasing trend. Tear strength of the OE-SSBR vulcanizate increased with increase in the crosslink density, whereas variation of the tear strength of NO-SSBR vulcanizate with the crosslink density showed a weak decreasing trend.

선도장 컬러강판용 도료에 적용하기 위한 자가 광경화형 폴리우레탄 아크릴레이트 올리고머 합성 및 물성 (Synthesis and Properties of Self-photocuring Polyurethane Acrylate Oligomer for Color Pre-coated metal)

  • 박소영;천정미;정부영;이도혁;천제환
    • 접착 및 계면
    • /
    • 제21권1호
    • /
    • pp.14-19
    • /
    • 2020
  • 본 연구에서는 Michael addition 반응을 통해 자가 광경화형 중간체를 합성하여 이를 적용한 폴리우레탄 아크릴레이트 올리고머를 합성하였다. 합성된 중간체와 폴리우레탄 아크릴레이트 올리고 머의 분석 및 물성은 FT-IR, NMR 및 UTM을 통해 확인하였다. 중간체의 함량이 증가할수록 인장강도는 증가하고 신율은 감소하였으며 필름이 소수성을 띄어 표면에너지가 감소하는 경향을 보였다. 중간체의 함량이 40 wt%일 때 부착성, 가공성, 연필경도가 우수했으며, 내용제성은 모두 우수한 결과를 나타내었다.

Influence of Process Oil Content on Properties of Silica-SBR Rubber Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.184-190
    • /
    • 2020
  • In the wet master batch process, process oil is used to improve the workability of silica-SBR. The process oil expands the polymer and provides lubrication to soften the stiff rubber chain. However, addition of excess process oil can interfere in the crosslinking reaction between rubber molecules and reduce the crosslinking density of silica-SBR. Controlling the amount of process oil is an important aspect for properly controlling the workability and crosslinking density of silica-SBR. In this study, silica-SBR was prepared by adjusting the amount of process oil to confirm its effect on silicaSBR. Vulcanization characteristics of silica-SBR were examined using a moving die rheometer. Dynamic viscoelasticity was measured using a dynamic mechanical thermal analyzer, and the mechanical properties were investigated using the universal testing machine according to ASTM D412. As a result, all silica-SBR compounds with 10 to 40 phr of process oil have effects of improving the processability and the silica dispersibility. Also, the optimum condition was determined when 10 phr of processed oil was added because the abrasion resistance was improved 65% compared to that at 40 phr.

Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application

  • Kirakosyan, Artavazd;Yun, Seokjin;Choi, Jihoon
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.307-311
    • /
    • 2017
  • Organometal halide perovskite materials, due to the tunability of their electronic and optical properties by control of composition and structure, have taken a position of significant importance in optoelectronic applications such as photovoltaic and lighting devices. Despite numerous studies on the structure - property relationship, however, practical application of these materials in electronic and optical devices is still limited by their processability during fabrication. Achieving nano-sized perovskite particles embedded in a polymer matrix with high loading density and outstanding photoluminescence performance is challenging. Here, we demonstrate that the careful control of nanoparticle formation and growth in the presence of poly(methyl methacrylate) results in perovskite nanoparticle - polymer nanocomposites with very good dispersion and photoluminescence. Furthermore, this approach is found to prevent further growth of perovskite nanoparticles, and thus results in a more uniform film, which enables fabrication using the perovskite nanoparticles.