Browse > Article
http://dx.doi.org/10.14773/cst.2016.15.6.314

Development of Electrochemical Processes for Aluminium-Based Coatings for Fusion Applications  

Konys, J. (Karlsruhe Institute of Technology)
Publication Information
Corrosion Science and Technology / v.15, no.6, 2016 , pp. 314-319 More about this Journal
Abstract
Reduced activation ferritic-martensitic steels (RAFM) are envisaged in future fusion technology as structural material which will be in direct contact with a flowing liquid lead-lithium melt, serving as breeder material. Aluminium-based coatings had proven their ability to protect the structural material from corrosion attack in flowing Pb-15.7Li and to reduce tritium permeation into the coolant, significantly. Coming from scales produced by hot dipping aluminization (HDA), the development of electrochemical-based processes to produce well-defined aluminium-based coatings on RAFM steels gained increased attention in research during the last years. Two different electrochemical processes are described in this paper: The first one, referred to as ECA, is based on the electrodeposition of aluminium from volatile, metal-organic electrolytes. The other process called ECX is based on ionic liquids. All three processes exhibit specific characteristics, for example in the field of processability, control of coating thicknesses (low activation criteria) and heat treatment behavior. The aim of this article is to compare these different coating processes critically, whereby the focus is on the comparison of ECA and ECX processes. New results for ECX will be presented and occurring development needs for the future will be discussed.
Keywords
Al-based coating; corrosion barrier; tritium permeation barrier; ionic liquids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Glasbrenner, J. Konys, and Z. Voss, J. Nucl. Mater., 281, 225 (2000).   DOI
2 J, Konys, W. Krauss, Z. Voss, and O. Wedemeyer, J. Nucl. Mater., 329-333, 1379 (2004).   DOI
3 J. Konys, W. Krauss, H. Steiner, J. Novotny, and A. Skrypnik, J. Nucl. Mater., 417, 1191 (2011).   DOI
4 T. Shikama, R. Knitter, J. Konys, T. Muroga, K. Tsuchiya, A. Moeslang, H Kawamura, and S. Nagata, Fusion Eng. Des., 83, 976 (2008).   DOI
5 A. Aiello, A. Ciampichetti, and G. Benamati, J. Nucl. Mater., 329-333, 1398 (2004).   DOI
6 H. Glasbrenner, J. Konys, Z. Voss, and O. Wedemeyer, J. Nucl. Mater., 307-311, 1360 (2002).   DOI
7 J. Konys, W. Krauss, Z. Voss, and O. Wedemeyer, J. Nucl. Mater., 367-370, 1144 (2007).   DOI
8 H. Glasbrenner, J. Konys, K. Stein-Fechner, and O. Wedemeyer, J. Nucl. Mater., 258-263, 1173 (1998).   DOI
9 G. Benamati, C. Chabrol, A. Perujo, E. Rigal, and H. Glasbrenner, J. Nucl. Mater., 271-272, 391 (1999).   DOI
10 W. Krauss, J. Konys, N. Holstein, and H. Zimmermann, J. Nucl. Mater., 417, 1233 (2011).   DOI
11 B. Reinhold, M. Hartel, and K. Angermann, Mater. Sci. & Eng. Technol., 39, 907 (2008).
12 W. Kautek and S. Birkle, Electrochim. Acta, 34, 1213 (1989).   DOI
13 W. Simka, D. Puszczyk, and G. Nawrat, Electrochim. Acta, 54, 5307 (2009).   DOI
14 S. Caporali, A. Fossati, A. Lavacchi, I. Perissi, A. Tolstogouzov, and U. Bardi, Corros. Sci., 50, 534 (2008).   DOI
15 R. Bock, Mater. Sci. & Eng. Technol., 39, 901 (2008).
16 S-E. Wulf, W. Krauss, and J. Konys, Fusion Eng. Des., 88, 2530 (2013).   DOI
17 J. Tang, K. Azumi, Electrochim. Acta, 56, 1130 (2011).   DOI
18 H. Glasbrenner and O. Wedemeyer, J. Nucl. Mater., 257, 274 (1998).   DOI
19 R. Suchentrunk, Mater. Sci. & Eng. Technol., 12, 190 (1981).
20 J. Konys, W. Krauss, N. Holstein, J. Lorenz, and S-E. Wulf, Fusion Eng. Des., 87, 1483 (2012).   DOI
21 H. Glasbrenner and J. Konys, Fusion Eng. Des., 58-59, 725 (1998).
22 H. Glasbrenner, J. Nucl. Mater., 283-287, 1302 (2000).   DOI
23 B. Li, C. Fan, C. Chen C, J. Lou, and L. Yan, Electrochim. Acta, 56, 5478 (2011).   DOI