• Title/Summary/Keyword: processability

Search Result 168, Processing Time 0.023 seconds

The Effect of Viscosity of Natural Rubber on Incorporation Rate of Carbon Black in The Mixing (배합중 카본블랙 혼입속도에 천연고무 점도가 미치는 영향)

  • Kang, Yong-Gu;Han, Shin;Lee, Kye-Jung;Ryu, Dong-Wan;Park, Chan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • The power curve during rubber mixing presents useful information for the understanding of rubber mixing process, because the power curve is determined the mixing state of rubber at the point. The time to the second peak on the power curve is known as carbon black incorporation time, BIT. This study gets the quantity relationship of BIT and viscosity of natural rubber, so by determining the mixing time of the compound on the ground of viscosity of the raw rubber. The mixing with natural rubber and carbon black is examined for various grade natural rubbers, encompassing a wide range of Mooney viscosity. Alter smoothing the mixing power curve using a polynomial, the carbon black incorporation time, BIT, was determined time to second power peak on the curve, The BIT's versus specific values on Mooney viscometer test curve show a linear relation, Especially, the peak of initial maximum torque on Mooney viscometer curve, PMT, is most relevant property relating to the BIT. PMT is useful index for determined optimum mixing time, To apply this results at the mixing, we effectively control the natural rubber mixing but can also know the grading of natural rubber upon processability.

  • PDF

Preparation and Mechanical Properties of PMMA Panels (PMMA 판재의 제조 및 기계적 특성)

  • 길기승;김의식;김대수
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.142-151
    • /
    • 2003
  • PMMA panels are made by two fabrication methods; cell molding and belt molding processes. But these methods have disadvantages in productivity and cost. So plastic processing engineers are very interested in developing a new production method for PMU panels using plastic films as molds because the new method can reduce production cost of belt molding method as well as can improve productivity of cell molding method. To give a solution for developing such a new molding method, the effects of melthyl methacrylate compound composition and curing reaction condition on the processability and mechanical strength of PMMA panels were investigated in this study. Poly(vinyl acetate) film was used as molds in producing PMMA panels. To determine an MMA compound showing good processability and good mechanical properties after curing, ingredients and their compositions were optimized step by step. Acrylic acid, as a coupling agent and a modifier, played an important role in increasing mechanical strength of PMMA panels.

Significance of Nanotechnology and Preparation Methods of Bioactive Organic Nanoparticle (나노 기술의 중요성과 생체 활성 유기 나노 입자의 제조법)

  • Yu, Ji-Yeon;Choe, Ji-Yeon;Kim, Gi-Hyeon;Lee, Jong-Chan;Lee, Jong-Hwi
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • Nanotechnology has penetrated into the various branches of research and development and it is particularly of benefit to the particle size engineering. It has been widely known that the particle size of an active pharmaceutical ingredient (API) is critical in determining the bioavailability and processability of pharmaceutical formulation. However, the window of appropriate particle size has been limited mainly due to related processing difficulties. The windows have been widened by the recent development of nanotechnologies, resulting in diversified drug delivery systems. The impact of this development is far more fundamental than what can be expected from conventional particle size engineering. It is the case that the preparation and use of nanoparticles will soon be a common task in the particle engineering step of pharmaceutical unit operations. In this chapter, the basic principles of variouspreparation techniques will be discussed in detail. Regardless of processing details, the preparation methods of pharmaceutical nanoparticles mainly concern how to deal with the extra energy related with particle size. Depending on the ways of treating the e103 energy, preparation methods can be classified into two major classes, i.e.. thermodynamic and kinetic approaches. The recent progresses have shown the possibilities of much more complex combinations of different approaches and the use of new types of energy and nanostructures.

  • PDF

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.

Processability Enhancement in Melt Processing of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 가공 특성 향상 연구)

  • Kim Hyogap;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.475-480
    • /
    • 2005
  • The lowering of melt viscosity has been investigated to achieve the processability enhancement in poly(ethylene naphthalate) (PEN) melt processing by the reactive melt blending with poly(ethylene terephthalate) (PET) and introducing lubricant as well. CaST lubricant resulted in the lowering of PEN melt viscosity but noticeable mechanical property drop was found in PEN with more than $2wt\%$ of lubricant due to the acceleration of thermal degradation by excess lubricant. PEN/PET (90/10) blend has less melt viscosity than PEN and transesterification between two polymers caused the additional viscosity depression. further viscosity lowering was found in PEN/PET blend with CaST since CaST is acting as the catalyst of transesterification as well as a lubricant in PEN/PET blend.

Synthesis and Characterization of Silica Composite for Digital Light Processing (광경화 3D 프린팅 공정을 위한 실리카 복합소재 합성 및 특성 분석)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.

Enhancement of Cu Wire Bondability by Increasing the Surface Roughness of Capillary (표면 요철이 발달된 캐필러리 적용에 따른 Cu 와이어의 본딩 특성)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Kang, Hong-Jeon;Kim, Hak-Bum;Moon, Jung-Tak;Riu, Doh-Hyung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.913-920
    • /
    • 2012
  • In spite of some problems in processability and bondability, Au wires in the microelectronics industry are gradually being replaced by copper wires to reduce the cost of raw material. In this article, the effects of surface roughness enhanced capillaries on thermosonic Cu wire bonding were evaluated. The roughness-enhanced zirconia toughened alumina (ZTA) capillaries were fabricated via a thermal grooving technique. As a result, the shear bond strength of first bonds (ball bonds) bonded using the roughness-enhanced capillary was enhanced by 15% as compared with that of normal bonds due to more effective plastic deformation and flow of a Cu ball. In the pull-out test of second bonds (stitch bonds), processed at two limit conditions on combinations of process parameters, the bond strength of bonds formed using the roughness-enhanced capillary also resulted in values higher by 55.5% than that of normal bonds because of the increase in the bonding area, indicating the expansion of a processing window for Cu wire bonding. These results suggest that the adoption of roughness-enhanced capillaries is a promising approach for enhancing processability and bondability in Cu wire bonding.

Characterization of TLCP Reinforced Polyester Blend Fibers (열방성 액정고분자 강화 폴리에스터 블렌드 섬유의 특성)

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.223-226
    • /
    • 2003
  • Due to the potential application to ultra-high strength fibers and excellent properties such as high mechanical properties, excellent thermal endurance and chemical stability, thermotropic liquid crystal polymers (TLCPS) are attractive in recent years [1, 2]. Furthermore, the melt blends of TLCPS and conventional thermoplastics have been extensively investigated because of their easy processing and high performance [3-6]. Since high performance polymers generally has high melt viscosity, introduction of the relatively low viscosity components may be one of the more effective techniques to improve processability through the decrement of melt viscosity in melt processing. (omitted)

  • PDF

The Micro-Actuator Development of using the Bubble (기포를 이용한 마이크로 액츄에이터 개발)

  • 최종필;반준호;전병희;장인배;김헌영;김병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.381-385
    • /
    • 2003
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated by a micro-heater under pulse heating. The micro-actuator is consist of three plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive ion Etching) process. The middle plate includes the chamber and diaphragm, and the upper plate is the micro-heater. The micro-heater designed non-uniform width and results in periodic generation of stable single bubbles in D.I water. The single bubble appears precisely on the narrow part of the micro-heater and control is recorded.

  • PDF

Polymorphic Characterization of Pharmaceutical Solids, Donepezil Hydrochloride, by 13C CP/MAS Solid-State Nuclear Magnetic Resonance Spectroscopy

  • Park, Tae-Joon;Ko, Dong-Hyun;Kim, Young-Ju;Kim, Yon-Gae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2007-2010
    • /
    • 2009
  • Donepezil hydrochloride is a reversible acetylcholinesterase inhibitor that is used in the treatment of Alzheimer’s disease to improve the cognitive performance. It shows different crystalline forms including hydrates. Therefore, it is very important to confirm the polymorphic forms in the formulations of pharmaceutical materials because polymorphs of the same drug often exhibit significant differences in solubility, bioavailability, processability and physical/chemical stability. In this paper, four different forms of donepezil hydrochloride were prepared and characterized using X-ray powder diffraction, Fourier transform infrared, and solid-state nuclear magnetic resonance (NMR) spectroscopy. This study showed that solid-state NMR spectroscopy is a powerful technique for obtaining structural information and the polymorphology of pharmaceutical solids.