DOI QR코드

DOI QR Code

Enhancement of Cu Wire Bondability by Increasing the Surface Roughness of Capillary

표면 요철이 발달된 캐필러리 적용에 따른 Cu 와이어의 본딩 특성

  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Kim, Ju-Hyung (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Kang, Hong-Jeon (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Kim, Hak-Bum (Material Department, PECO) ;
  • Moon, Jung-Tak (MK Electron Co. Ltd) ;
  • Riu, Doh-Hyung (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 이종현 (서울과학기술대학교 신소재공학과) ;
  • 김주형 (서울과학기술대학교 신소재공학과) ;
  • 강홍전 (서울과학기술대학교 신소재공학과) ;
  • 김학범 (한국정밀) ;
  • 문정탁 (엠케이전자) ;
  • 류도형 (서울과학기술대학교 신소재공학과)
  • Received : 2012.05.02
  • Published : 2012.12.25

Abstract

In spite of some problems in processability and bondability, Au wires in the microelectronics industry are gradually being replaced by copper wires to reduce the cost of raw material. In this article, the effects of surface roughness enhanced capillaries on thermosonic Cu wire bonding were evaluated. The roughness-enhanced zirconia toughened alumina (ZTA) capillaries were fabricated via a thermal grooving technique. As a result, the shear bond strength of first bonds (ball bonds) bonded using the roughness-enhanced capillary was enhanced by 15% as compared with that of normal bonds due to more effective plastic deformation and flow of a Cu ball. In the pull-out test of second bonds (stitch bonds), processed at two limit conditions on combinations of process parameters, the bond strength of bonds formed using the roughness-enhanced capillary also resulted in values higher by 55.5% than that of normal bonds because of the increase in the bonding area, indicating the expansion of a processing window for Cu wire bonding. These results suggest that the adoption of roughness-enhanced capillaries is a promising approach for enhancing processability and bondability in Cu wire bonding.

Keywords

Acknowledgement

Grant : 차세대 Cu-wire 본딩용 세라믹 캐필러리 제조기술 개발

Supported by : 중소기업청

References

  1. J. S. Cho, K. A. Yoo, J. T. Moon, S. B. Son, S. H. Lee, and K. H. Oh, Met. Mater. Int. 18, 881 (2012). https://doi.org/10.1007/s12540-012-5021-8
  2. S. murali, N. Srikanth, and C. J. Vath III, Mater. Res. Bull. 38, 637 (2003). https://doi.org/10.1016/S0025-5408(03)00004-7
  3. P. Ratchev, S. Stoukatch, and B. Swinnen, Microelectron. Reliab. 46, 1315 (2006). https://doi.org/10.1016/j.microrel.2005.11.002
  4. H. G. Kim, D. H. Cho, E. K. Jeong, W. Y. Kim, and S. H. Lim, Electron. Mater. Lett. 5, 99 (2009).
  5. J. W. Joo, J. Microelectron. Packag. Soc. 16, 11 (2009).
  6. J. Onuki, M. Koizumi, and I. Araki, IEEE Trans. Compo. Hybrids Manufact. Technol. 12, 550 (1987).
  7. K. Toyozawa, K. Fujita, S. Minamide, and T. Maeda, IEEE Trans. Compo. Hybrids Manufact. Technol. 13, 667 (1990). https://doi.org/10.1109/33.62577
  8. H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon, and Y. J. Park, IEEE Trans. Compo. Packag. Technol. 26, 367 (2003). https://doi.org/10.1109/TCAPT.2003.815121
  9. N. Srikanth, S. Murali, Y. M. Wong, and C. J. Vath III, Thin Solid Films, 462, 339 (2004).
  10. H. M. Ho, J. Tan, Y. C. Tan, B. H. Toh, and P. Xavierg, Proc. 55th Electronic Components and Technology Conference, p.292, IEEE Components, Packaging and Manufacturing Technology Society, Orlando, Florida (2005).
  11. S. Murali, N. Srikanth, Y. M. Wong, and C. J. Vath III, J. Mater. Sci. 42, 615 (2007). https://doi.org/10.1007/s10853-006-1148-7
  12. Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh, and J. Tan, Microelectron. Eng. 84, 368 (2007). https://doi.org/10.1016/j.mee.2006.11.003
  13. M. Drozdov, G. Gur, Z. Atzmon, and W. D. Kaplan, J. Mater. Sci. 43, 6038 (2008). https://doi.org/10.1007/s10853-008-2955-9
  14. Z. W. Zhong, Microelectron. Int. 26, 10 (2009).
  15. L. England, S. T. Eng, C. Liew, and H. H. Lim, Microelectron. Reliab. 51, 81 (2011). https://doi.org/10.1016/j.microrel.2010.02.014
  16. L. T. Nguyen, D. McDonald, A. R. Danker, and P. Ng, IEEE Trans. Compo. Packag. Manifact. Technol. 18, 423 (1995). https://doi.org/10.1109/95.390327
  17. S. Kaimori, T. Nonaka, and A. Mizoguchi, IEEE Trans. Adv. Packag. 29, 227 (2006). https://doi.org/10.1109/TADVP.2006.872999
  18. K. S. Goh and Z. W. Zhong, Microelectron. Eng. 84, 362 (2007). https://doi.org/10.1016/j.mee.2006.11.002
  19. J. Lee, M. Mayer, Y. Zhou, and S. J. Hong, Microelectron. J. 38, 842 (2007). https://doi.org/10.1016/j.mejo.2007.07.095
  20. S. L. Khoury, D. J. Burkhard, D. P. Galloway, and T. A. Scharr, IEEE Trans. Compo. Hybrids Manufact. Technol. 13, 673 (1990). https://doi.org/10.1109/33.62578
  21. D. H. Riu, J. H. Lee, J. H. Kim, H. J. Kang, M. R. Jang, and J. S. Hong, Project Report, SMBA, Korea (2011).
  22. http://www.peco.co.kr/technology_set.htm.
  23. http://www.mke.co.kr/l_eng/03_pro/index_04.php.