Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.12.913

Enhancement of Cu Wire Bondability by Increasing the Surface Roughness of Capillary  

Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
Kim, Ju-Hyung (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
Kang, Hong-Jeon (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
Kim, Hak-Bum (Material Department, PECO)
Moon, Jung-Tak (MK Electron Co. Ltd)
Riu, Doh-Hyung (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
Publication Information
Korean Journal of Metals and Materials / v.50, no.12, 2012 , pp. 913-920 More about this Journal
Abstract
In spite of some problems in processability and bondability, Au wires in the microelectronics industry are gradually being replaced by copper wires to reduce the cost of raw material. In this article, the effects of surface roughness enhanced capillaries on thermosonic Cu wire bonding were evaluated. The roughness-enhanced zirconia toughened alumina (ZTA) capillaries were fabricated via a thermal grooving technique. As a result, the shear bond strength of first bonds (ball bonds) bonded using the roughness-enhanced capillary was enhanced by 15% as compared with that of normal bonds due to more effective plastic deformation and flow of a Cu ball. In the pull-out test of second bonds (stitch bonds), processed at two limit conditions on combinations of process parameters, the bond strength of bonds formed using the roughness-enhanced capillary also resulted in values higher by 55.5% than that of normal bonds because of the increase in the bonding area, indicating the expansion of a processing window for Cu wire bonding. These results suggest that the adoption of roughness-enhanced capillaries is a promising approach for enhancing processability and bondability in Cu wire bonding.
Keywords
Cu wire; metals; bonding; strength; scanning electron microscopy (SEM);
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Cho, K. A. Yoo, J. T. Moon, S. B. Son, S. H. Lee, and K. H. Oh, Met. Mater. Int. 18, 881 (2012).   DOI   ScienceOn
2 S. murali, N. Srikanth, and C. J. Vath III, Mater. Res. Bull. 38, 637 (2003).   DOI   ScienceOn
3 P. Ratchev, S. Stoukatch, and B. Swinnen, Microelectron. Reliab. 46, 1315 (2006).   DOI   ScienceOn
4 H. G. Kim, D. H. Cho, E. K. Jeong, W. Y. Kim, and S. H. Lim, Electron. Mater. Lett. 5, 99 (2009).
5 J. W. Joo, J. Microelectron. Packag. Soc. 16, 11 (2009).
6 J. Onuki, M. Koizumi, and I. Araki, IEEE Trans. Compo. Hybrids Manufact. Technol. 12, 550 (1987).
7 K. Toyozawa, K. Fujita, S. Minamide, and T. Maeda, IEEE Trans. Compo. Hybrids Manufact. Technol. 13, 667 (1990).   DOI   ScienceOn
8 H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon, and Y. J. Park, IEEE Trans. Compo. Packag. Technol. 26, 367 (2003).   DOI   ScienceOn
9 N. Srikanth, S. Murali, Y. M. Wong, and C. J. Vath III, Thin Solid Films, 462, 339 (2004).
10 H. M. Ho, J. Tan, Y. C. Tan, B. H. Toh, and P. Xavierg, Proc. 55th Electronic Components and Technology Conference, p.292, IEEE Components, Packaging and Manufacturing Technology Society, Orlando, Florida (2005).
11 S. Murali, N. Srikanth, Y. M. Wong, and C. J. Vath III, J. Mater. Sci. 42, 615 (2007).   DOI   ScienceOn
12 Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh, and J. Tan, Microelectron. Eng. 84, 368 (2007).   DOI   ScienceOn
13 M. Drozdov, G. Gur, Z. Atzmon, and W. D. Kaplan, J. Mater. Sci. 43, 6038 (2008).   DOI   ScienceOn
14 Z. W. Zhong, Microelectron. Int. 26, 10 (2009).
15 L. England, S. T. Eng, C. Liew, and H. H. Lim, Microelectron. Reliab. 51, 81 (2011).   DOI   ScienceOn
16 L. T. Nguyen, D. McDonald, A. R. Danker, and P. Ng, IEEE Trans. Compo. Packag. Manifact. Technol. 18, 423 (1995).   DOI   ScienceOn
17 S. Kaimori, T. Nonaka, and A. Mizoguchi, IEEE Trans. Adv. Packag. 29, 227 (2006).   DOI   ScienceOn
18 K. S. Goh and Z. W. Zhong, Microelectron. Eng. 84, 362 (2007).   DOI   ScienceOn
19 J. Lee, M. Mayer, Y. Zhou, and S. J. Hong, Microelectron. J. 38, 842 (2007).   DOI   ScienceOn
20 S. L. Khoury, D. J. Burkhard, D. P. Galloway, and T. A. Scharr, IEEE Trans. Compo. Hybrids Manufact. Technol. 13, 673 (1990).   DOI   ScienceOn
21 http://www.mke.co.kr/l_eng/03_pro/index_04.php.
22 D. H. Riu, J. H. Lee, J. H. Kim, H. J. Kang, M. R. Jang, and J. S. Hong, Project Report, SMBA, Korea (2011).
23 http://www.peco.co.kr/technology_set.htm.