Correct prediction of emotion is essential for developing advanced health devices. For this purpose, neural network has been successfully used. However, interpretation of how a certain emotion is predicted through the emotion prediction neural network is very tough. When interpreting mechanism about how emotion is predicted by using the emotion prediction neural network can be developed, such mechanism can be effectively embedded into highly advanced health-care devices. In this sense, this study proposes a novel approach to interpreting how the emotion prediction neural network yields emotion. Our proposed mechanism is based on HRV (heart rate variability) measurements, which is based on calculating physiological data out of ECG (electrocardiogram) measurements. Experiment dataset with 23 qualified participants were used to obtain the seven HRV measurement such as Mean RR, SDNN, RMSSD, VLF, LF, HF, LF/HF. Then emotion prediction neural network was modelled by using the HRV dataset. By applying the proposed mechanism, a set of explicit mathematical functions could be derived, which are clearly and explicitly interpretable. The proposed mechanism was compared with conventional neural network to show validity.
컴포넌트 기반 소프트웨어 개발 (CBD) 기술은 재사용 가능한 컴포넌트를 조합하여 효율적으로 소프트웨어를 개발함으로써 개발 노력과 상품화 시간을 줄여주는 새로운 기술로 정착되고 있다. 이러한 CBD 컴포넌트는 한 도메인의 표준이나 공통적인 기능을 제공하여야 재사용성이 높아진다. 특히, 공통성 안의 미세한 가변적인 부분도 모델링하고, 이 가변성을 각 어플리케이션의 특성에 적합하게 특화 할 수 있도록 설계되어야 한다. 기존의 CBD 방법론에서도 이 중요성이 강조되고 있지만, 체계적이며 구체적인 개발 프로세스, 적용 지침 및 산출물 양식의 제공이 미흡하여, 도메인 컴포넌트의 개발은 비체계적인 프로세스와 개발자의 경험에 의존해 왔다. 본 논문은 컴포넌트 설계를 위한 체계적인 프로세스와 기법을 제안한다. 이 프로세스는 여러 단계와 활동으로 구성되며, 각 활동에 대한 세부 지침과 표준 양식도 포함하여 보다 효과적인 컴포넌트 개발을 도모한다. 제안된 기법의 실효성 검증을 위하여 금융 도메인에 적용한 사례연구를 제시하며, 다른 기법들과의 비교 평가도 다룬다. CBD의 공통 컴포넌트 개발에 제안된 프로세스와 지침의 사용함으로써 보다 재사용성과 적용성이 높은 컴포넌트가 비용 및 시간에 있어서 효율적으로 개발될 것으로 기대된다.
Engineering process control (EPC) is one of the techniques very widely used in process. EPC is based on control theory which aims at keeping the process on target. Statistical process control (SPC), also known as statistical process monitoring. The main purpose of SPC is to look for assignable causes (variability) in the process data. The combined SPC/EPC scheme is gaining recognition in the process industries where the process frequently experiences a drifting mean. This paper aims to study the difference between SPC and EPC in simple terms and presents a case study that demonstrates successful integration of SPC and EPC for a product in drifting industry. Statistical process control (SPC) monitoring of the special causes of a process, along with engineering feedback control such as proportional-integral-derivative (PID) control, is a major tool for on-line quality improvement.
In off-line process optimization, process parameters are controlled such that the process is robust against changes in equipment conditions and incoming materials. The off-line methods, however, are not effective when the changes are so large that process parameters need to be adjusted. On-line control can respond to such large changes, but process uniformity has not been controlled on-line due to the difficulties in modeling. This paper is aimed at developing a new on-line control methodology where the uniformity is controlled effectively. The process variability is categorized based on the physical considerations, and the process parameters are classi- fied considering their effects on the categorized process variabilities. On-line control is performed with the properly selected process parameters so that robustness may not be degraded. The developed methodology is applied to the single wafer plasma etching processes, which resulted in both higher within-a-wafer uniformity and compens- ation of the incoming material non-uniformity.
EPC seeks to minimize variability by transferring the output variable to a related process input(controllable) variable. In the case of product control, a very reasonable objective is to try to minimize the variance of the output deviations from the target or set point. We consider an alternative EPC model with first-order autoregressive disturbance.
We consider a filling process problem on a production line. Up to present this problem have examined by 100% inspection. Thus a target value is determined which takes into account the regular selling prices, the reprocess cost, the excess quality cost and the process variability and so on. However, in this paper we propose a solution under specified sampling plan when the inspection is nondestructive.
Control charts are used to distinguish between chance and assignable causes in the variability of quality characteristics. When a control chart signals that an assignable cause is present, process engineers must initiate a search for the assignable cause of the process disturbance. Identifying the time of a process change could lead to simplifying the search for the assignable cause and less process down time, as well as help to reduce the probability of incorrectly identifying the assignable cause. The change point estimation by likelihood theory and the built-in change point estimation in a control chart have been discussed until now. In this article, we discuss two kinds of process change point estimation when the CUSUM ($\bar{x}$, s) control chart for monitoring process mean and variance simultaneously is operated. Throughout some numerical experiments about the performance of the change point estimation, the change point estimation techniques in the CUSUM ($\bar{x}$, s) control chart are considered.
This paper is concerned with the economic selection of both the lower limit and the process mean for a continuous production process. Consider a production process where items are produced continuously. All of the items are subject to acceptance inspection. The items for which the measured values of the quality characteristic are larger than the lower limit are accepted, and those smaller than the lower limit are rejected and excluded from shipment. The process mean may be set higher to reduce the costs incurred by imperfect quality. Using a higher process mean, however, results in a higher production cost when production cost is an increasing function of the quality characteristic. Assuming that the quality characteristic is normally distributed with known variability, cost models are constructed which involve production cost, cost incurred by imperfect quality, rejection cost, and inspection cost. Methods of finding optimal values of the lower limit and the process mean are presented and numerical examples are given.
In this study, we attempt to design a real-time autonomic nervous system(ANS) evaluation system usable during exercise using heart instantaneous frequency(HIF). Although heart rate variability(HRV) is considered to be a representative signal widely used ANS evaluation system, the R-peak detection process must be included to obtain an HRV signal, which involves a high sampling frequency and interpolation process. In particular, it cannot accurately evaluate the ANS using HRV signals during exercise because it is difficult to detect the R-peak of electrocardiogram(ECG) signals with exposure to many noises during exercise. Therefore, in this study, we develop the ground for a system that can analyze an ANS in real-time by using the HIF signal circumventing the problem of the HRV signal during exercise. First, we compare the HRV and HIF signals in order to prove that the HIF signal is more efficient for ANS analysis than HRV signals during exercise. Further, we performed real-time ANS analysis using HIF and confirmed that the exerciser's ANS variation experiences massive surges at points of acceleration and deceleration of the treadmill(similar to HRV).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.