• Title/Summary/Keyword: process simulation

Search Result 9,663, Processing Time 0.036 seconds

A Study on Throughput Increase in Semiconductor Package Process of K Manufacturing Company Using a Simulation Model (시뮬레이션 모델을 이용한 K회사 반도체 패키지 공정의 생산량 증가를 위한 연구)

  • Chai, Jong-In;Park, Yang-Byung
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • K company produces semiconductor package products under the make-to-order policy to supply for domestic and foreign semiconductor manufacturing companies. Its production process is a machine-paced assembly line type, which consists of die sawing, assembly, and test. This paper suggests three plans to increase process throughput based on the process analysis of K company and evaluates them via a simulation model using a real data collected. The three plans are line balancing by adding machines to the bottleneck process, product group scheduling, and reallocation of the operators in non-bottleneck processes. The evaluation result shows the highest daily throughput increase of 17.3% with an effect of 2.8% reduction of due date violation when the three plans are applied together. Payback period for the mixed application of the three plans is obtained as 1.37 years.

Development of Optimal Stage Calculation Program for the Design of Waste Etchant Recovering Process (폐식각액 재생공정 설계를 위한 최적단수계산 프로그램 개발)

  • So, Won-Shoup;Park, Jin-Soo;Jung, Jae-Hak;Sur, Gil-Soo
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2009
  • In this study, we found out the relation between $FeCl_3$ recovering-concentration and stage number of extraction process for invar (Fe+Ni) etching process. In order to get the desired $FeCl_3$ recovering-concentration economically, we developed the simulation program for designing the optimal $FeCl_3$ extraction process. We got the key parameter for this simulation program through pilot scale experiments. The process simulation by the developed program could reduce the emission of waste etching solution as well as the treatment costs. In addition, the developed program could calculate the number of stage of the etchant recovering system and the process time to get the desired concentration of $FeCl_3$. This program was used to compute the optimal capacity of the etchant recovering system and applied to the optimization of the stage of the etchant recovering system in real IT industry.

A Study on Carbon Dioxide Removal Process Using Composite Membrane in DME Production Process (DME 생산공정에서 복합막을 이용한 이산화탄소 제거공정 전산모사)

  • Noh, Sang-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4698-4706
    • /
    • 2014
  • In this study, the simulation was performed for the CO removal process using a composite membrane in DME production. The composite membrane, PEI-PDMS (polyetherimide- polydimethyl siloxane) manufactured by Airrane Co. Ltd., was used in the modeling through a commercial simulation design program, PRO/II with PROVISION 9.2 by Invensys. To simulate the process, the permeability constants of each of the pure component from Airrane Co. Ltd. were determined by regression analysis from the experimental data. The required separation membrane area and utility cost in the CO removal process were obtained using a chemical process simulator and composite membrane with a compatible permeability constant.

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process (공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

A Study on the Accumulation Phenomena of Oxidized Starch in White Water of closed Fine Papermaking Process (Part 2) -Effect of broke use ratio and surface sizing pick up- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 (제2보) -파지혼합비율 및 표면사이징 픽업량 변화의 영향-)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.35-43
    • /
    • 2004
  • Reduction of fresh water consumption and effluent discharge provide diverse advantages in raw materials and energy savings. Papermaking system closure, however, reduces the efficiency of additives, decreases retention and dewatering, and causes many other Problems in papermaking. Accumulation of inorganic and organic substances in the process white water is the prime cause of these problems. Understanding of the accumulation phenomena of the detrimental substances in the papermaking process is of great importance for papermaking system closure. In this study a process simulation method was employed to analyze the accumulation phenomena of anionic starch in the process white water as the reuse rate of dry broke and pick up of surface sizing agent is increased. Steady state simulation studies were carried out based on the model developed in previous study. The variation of dissolved starch concentration in each process unit was monitored as a function of reuse rate of dry broke and surface sizing agent pick up rate. The result showed that dissolved starch concentration Increased as reuse rate of dry broke and surface sizing agent pick up rate was increased.

Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas ($H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사)

  • Kang, Seok-Hyun;Jeong, Byung-Man;Choi, Hyun-Woo;Kim, Sung-Hyun;Lee, Byung-Kwon;Choi, Dae-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2005
  • The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

A Simulation Study on the Carbon Dioxide Removal Process Using Aqueous Amine Solution in the GTL Process (GTL 공정에서 아민 수용액을 이용한 이산화탄소 제거공정의 전산모사에 대한 연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3334-3340
    • /
    • 2011
  • In this study, a computer simulation work has been performed for the carbon dioxide removal process using aqueous amine solution in the GTL (Gas To Liquids) process. 30wt% DEA(diethnaol amine) aqueous solution was utilized as a carbon dioxide remvoal agent and an absorber-stripper two-columns configuration was used. Kent-Eisenburg modeling equation built-in amine specicial package was used for the modeling of the carbon dioxide removal process. PRO/II with PROVISION 9.0, a commercial process simulator was used. Through this simulation study, heat and material balance was obtained and packing column diameter and column height were also estimated.

A Study on the Erection Process Modeling and Simulation considering Variability (변동성을 고려한 탑재프로세스 모델링과 시뮬레이션에 관한 연구)

  • Lim, Hyunkyu;Lee, Yonggil;Kim, Byungchul;Woo, Jonghun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.101-107
    • /
    • 2016
  • Generally, the shipbuilding industry has finite resources and limited workspace. Due to finite resources, limited workspace and state of block preparation, erection process in shipbuilding industry is frequently delayed than erection process scheduling which is planned at long-term plan stage. In this study, considering variability of block reserve ratio, the degree of delay in real erection process is measured and compared to scheduling which is planned at long-term plan stage in shipbuilding industry including finite capacity and variative lead time. Also, the erection process scheduling which has minimum lead time can be checked through simulation. The results of this study could be improved the accuracy of erection process scheduling by checking the main event compliance ratio by block reserve ratio and calculating the optimum erection pitch for the main event compliance.

An analysis of torsional flange-upsetting process based on slab method (슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석)

  • Jae-Hoon Park
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.