• Title/Summary/Keyword: process of knowledge generation

Search Result 204, Processing Time 0.023 seconds

Development of Elementary Students' Ability to Generate Hypothesis Knowledge through Knowledge Generation Learning in Science (과학 지식 생성 학습을 통한 초등학생들의 가설 지식 생성 능력의 발달)

  • Kang, Eun-Mi;Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.257-270
    • /
    • 2006
  • The purpose of this study was to develop elementary students' ability to generate hypothesis knowledge through knowledge generation learning in science. The learning program consisted of a series of 28 activities to generate hypotheses in science. Eighty 6th grade students participated in the study and were divided into experimental and control groups. The experimental group was administered a program geared towards hypothesis generation learning and the control group was administered a program aimed at hypothesis expository learning in elementary science. After using the respective programs, subjects in both groups were tested in terms of their abilities in abductive knowledge generation and administered a descriptive self-report regarding their generation of hypotheses. Two of the 28 activity program worksheets in the experimental group were analyzed in terms of the quality and process of students' hypothesis generation. The results were as follows: 1) The experimental group showed significantly higher scores in terms of scientific knowledge generation (i.e. abductive knowledge generation) than the control group. 2) The degree of hypothesis explanation in the experimental group was significantly higher than in the control group in terms of the quality of the generated hypotheses. In addition, students in the experimental group generated more varied and valid knowledge than the control group in terms of sub-knowledge of hypothesis generation. Therefore, it can be argued that this program for hypothesis knowledge generation in elementary science students was effective in the generation of hypothesis knowledge.

  • PDF

A Philosophical Study on the Generating Process of Declarative Scientific Knowledge - Focused on Inductive, Abductive, and Deductive process (선언적 과학 지식의 생성 과정에 대한 과학철학적 연구 - 귀납적, 귀추적, 연역적 과정을 중심으로 -)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Park, Yun-Bok;Kang, Min-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.3
    • /
    • pp.215-228
    • /
    • 2003
  • The present study is to analyze the arguments about the generation of declarative scientific-knowledge in the philosophy of science and invent a structured model of the process of scientific-knowledge generation with the types of the generated scientific-knowledge. The invented model shows that scientific-knowledge generation is a distinctive process with the processes of inductive, abductive, and deductive thinking. Furthermore, inductive process is included with observation, which is consisted of simple observation and operative observation, and rule-discovery which is involved with the processes of commonness discovery, classification, pattern discovery, and hierarchical relationship. Also, abductive process has two components. One component generates question and second component generates hypothesis in which the process consists of representing question situation, identifying experienced situation, identifying causal explicans, and generating hypothetical explicans. Finally, deductive process is involved with logical inventing test method and evaluation criteria, concrete inventing test method and evaluation criteria, evaluating hypothesis, and making conclusion.

Next Generation Knowledge Management A Process Integrated Model of Knowledge Asset Utilization (업무-지식 통합기반의 차세대 지식경영 모델)

  • Sohn, Jung Hoon Derick;Seo, Kyong Ran
    • Knowledge Management Research
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • Despite the well accepted necessity and importance of knowledge management, cases of successful knowledge management are not easy to find. With a case study of a Korean organization, this research introduces an integrated knowledge management model, in which knowledge and work processes are combined to improved knowledge performance. Knowledge-work process integration facilitates knowledge asset creation, transfer, and utilization, through which inefficiencies in knowledge utilization may be removed and knowledge contribution to business performance may be enhanced. Knowledge-work process integration may further be aligned with innovation processes, enabling systematic and continuous knowledge based process innovation.

  • PDF

An Intensive Interview Study on the Process of Scientists' Science Knowledge Generation (과학자의 과학지식 생성 과정에 대한 심층 면담 요구)

  • Yang, Il-Ho;Jeong, Jin-Su;Kwon, Yong-Ju;Jeong, Jin-Woo;Hur, Myoung;Oh, Chang-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 2006
  • The purpose of this study was to analyze the process of scientists' science knowledge generation by employing four creative scientists as participants. Raw protocols were collected by an intensive interview method and then analyzed by a psychological modelling procedure. The present study showed that the process of knowledge generation divided into the processes of inductive, abductive, and deductive thinking. Furthermore, the inductive process in simple and operative observation was involved in the processes of generating a question, conjecture/prediction, designing an operational method, operation, and simple observation. Also, the abductive process had two components; question generation, and hypothesis generation which consisted of analyzing questions, searching explicans, and constructing hypothesis. Finally, the deductive process involved inventing abstract test methods, inventing abstract criteria, inventing concrete test methods, inventing concrete criteria, collecting results, and evaluating hypotheses and stating conclusions.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Analyzing Elementary Science-Gifted Students' Knowledge Generation Processes in Scientific Inquiry Performance (과학 탐구 수행일지에 나타난 초등 과학영재의 지식생성과정 분석)

  • Yang, Il-Ho;Lim, Sung-Man;Paik, Myoung-Jong;Choi, Hyun-Dong
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.5
    • /
    • pp.770-787
    • /
    • 2011
  • The purpose of this study was to analyze science-gifted students' knowledge-generation processes by analyzing students' inquiry journal. As a result, first, science-gifted students showed various knowledge-generation processes, but they were limited to inductive thinking and abductive thinking, and their thinking processes were very simple. Second, most of the knowledge-generation processes of science gifted were simple, repetitive and diagrammatic processes because of observation and empirical situation of a limited scope. And a simple and repetitive diagram was generated by a simple variable selection and design, observation in limited scope, unbiased intervention by subjective thinking, and absence of exploration or finding errors. And they showed often a logical leap of reasoning.

A Grounded Theory on the Process of Generating Hypothesis-Knowledge about Scientific Episodes (과학적 가설 지식의 생성 과정에 대한 바탕이론)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Kang, Min-Jeong;Kim, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.5
    • /
    • pp.458-469
    • /
    • 2003
  • Hypothesis is defined as a proposition intended as a possible explanation for an observed phenomenon. The purpose of this study was to generate a grounded theory on the process of undergraduate students' generating hypothesis-knowledge about scientific episodes. Three hypothesis-generating tasks were administered to four college students majored in science education. The present study showed that college students represented five types of intermediate knowledge in the process of hypothesis generation, such as question situation, hypothetical explicans, experienced situation, causal explicans, and final hypothetical knowledge. Furthermore, students used six types of thinking methods, such as searching knowledges, comparing a question situation and an experienced situation, borrowing explicans, combining explicans, selecting an explican, and confirming explicans. In addition, hypothesis-generating process involves inductive and deductive reasoning as well as abductive reasoning. This study also discusses the implications of these findings for teaching and evaluating in science education.

The Features of the Observation and the Hypothetical Faults Generated by Pre-service Elementary Teachers on Candlelight Inquiry Tasks - Focusing on Usage of the Participants' Prior Knowledge - (양초 연소 탐구 과제 상황에서 초등 예비교사가 생성한 관찰 및 가설의 오류 특성 - 학습자의 선행 지식의 활용을 중심으로 -)

  • Oh, Chang-Ho;Yang, Il-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.2
    • /
    • pp.93-104
    • /
    • 2009
  • The purpose of this study was to explore the relationship between pre-service elementary teacher's prior knowledge and processes of observations and hypotheses generation via analysis of descriptive fault patterns during observation, problem generation and hypotheses generation processes. For the purpose of this study, thirty-four undergraduate students were participated and descriptions of participants' responds were analyzed. As the result, four patterns of descriptive fault on the process of generating hypothesis were classified; 1) descriptive fault from the causalities, 2) descriptive fault from repetition of observational facts, 3) descriptive fault from the priority of prior knowledge, and 4) descriptive fault from negation of the observational facts. From the result, the researcher was able to explore the faults caused by pre-service elementary students' prior knowledge through the observational descriptive analysis with hypothetical descriptive analysis.

  • PDF

Development of High-Performance FEM Modeling System Based on Fuzzy Knowledge Processing

  • Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of tree-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Voronoi diagram method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

Development of a Spider Inquiry Program for Elementary Students based on the Scientific-Knowledge Generation Model (과학 지식 생성 모형을 기반으로 한 초등학생용 거미 탐구 프로그램 개발)

  • Shin, Dong-Hoon;Kim, Suk-Ki;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.465-475
    • /
    • 2007
  • The purpose of this study was to develop a spider inquiry program for elementary school students based on the scientific-knowledge generating model. For the purposes of this study, we selected three species of snider (e.g. Pardosa astrigera, Argiope bruennichii, Nephila clavata) which were easily found in a school garden by elementary school students. The spider inquiry program was based on a model of the process of scientific-knowledge generation, and consisted of two sections: for students and teachers. The students' program was designed to generate scientific-knowledge, whilst the teachers' program was designed to guide the inquiry smoothly even in the case of teachers who lack experience in inquiry activities or possess limited subject knowledge on spiders. As a result, this program was found to have an influence on generating the scientific-knowledge of elementary students and the results further suggest that it may be helpful to teachers conducting an inquiry activity. Additionally, this program could be used as a selective activity lesson such as a science inquiry lesson, or as a biology inquiry class, as a weekend life experience study or as an activity on a science camp.

  • PDF