An Intensive Interview Study on the Process of Scientists' Science Knowledge Generation

과학자의 과학지식 생성 과정에 대한 심층 면담 요구

  • Published : 2006.02.28

Abstract

The purpose of this study was to analyze the process of scientists' science knowledge generation by employing four creative scientists as participants. Raw protocols were collected by an intensive interview method and then analyzed by a psychological modelling procedure. The present study showed that the process of knowledge generation divided into the processes of inductive, abductive, and deductive thinking. Furthermore, the inductive process in simple and operative observation was involved in the processes of generating a question, conjecture/prediction, designing an operational method, operation, and simple observation. Also, the abductive process had two components; question generation, and hypothesis generation which consisted of analyzing questions, searching explicans, and constructing hypothesis. Finally, the deductive process involved inventing abstract test methods, inventing abstract criteria, inventing concrete test methods, inventing concrete criteria, collecting results, and evaluating hypotheses and stating conclusions.

이 연구의 목적은 과학자들의 과학지식 생성 과정을 밝히는 것이었다. 이를 위해 저명한 과학학술지에 세계적 수준의 논문을 3회 이상 발표한 과학자 중 연구에 적합한 과학자 4명을 선정했다. 그리고 이 과학자들이 발표한 최근의 논문들을 분석하여 과학지식 생성 과정을 전체적으로 기술했고, 심층 면담을 통해 지식 생성 과정의 세부 과정을 추가하여 프로토콜을 완성했다. 이렇게 완성된 프로토콜을 인지 과정 모형화 절차에 따라 분석했다. 연구 결과에 의하면, 과학자들의 과학지식 생성 과정은 크게 귀납적 과정, 귀추적 과정, 연역적 과정으로 구분된다. 먼저 귀납적 과정은 단순 관찰과 조작 관찰을 포함한다. 여기에서 조작 관찰은 '의문 생성 $\rightarrow$ 추측/예측 $\rightarrow$ 조작방법 설계 $\rightarrow$ 조작 $\rightarrow$ 단순 관찰' 등의 하위 과정을 포함한다. 그리고 귀추적 과정은 의문 생성 과정과 가설 생성 과정으로 구분된다. 여기에서 가설 생성 과정은 '사실 인식 $\rightarrow$ 경험상황표상 $\rightarrow$ 원인적설명자 동정 $\rightarrow$ 원인적설명자 차용 $\rightarrow$ 가설적설명자 조합 $\rightarrow$ 가설 확인' 등의 하위 과정을 포함한다. 마지막으로 연역적 과정은 방법 및 기준 고안 과정과 가설 평가 과정으로 구분된다. 여기에서 방법 및 기준 고안 과정은 '경험검증상황 표상 $\rightarrow$ 경험 검증방법 표상 $\rightarrow$ 경험검증방법 차용' 등의 하위 과정을 포함한다. 그리고 가설 평가는 결과 수집 과정과 가설 평가 및 결론 진술 과정을 포함한다.

Keywords

References

  1. 강인애 (1997). 왜 구성주의인가? - 정보화시대와 학습자중심의 교육환경. 서울: 문음사
  2. 권용주, 고경태, 정진수 (2003a). 생물학 가설의 검증에서 연역적 과학지식의 구조와 생성 과정. 한국생물교육학회지, 31(3), 236-245
  3. 권용주, 박윤복, 정진수, 양일호 (2004). 과학적 규칙성 지식의 생성 과정: 경향성 지식의 생성을 중심으로. 초등과학교육, 23(1), 61-73
  4. 권용주, 양일호, 정원우 (2000). 예비과학교사들의 가설 창안 과정에 대한 탐색적 분석. 한국과학교육학회지, 20(1), 29-42
  5. 권용주, 정진수, 강민정, 김영신 (2003b). 과학적 가설 지식의 생성 과정에 대한 바탕이론. 한국과학교육학회지, 23(5), 458-469
  6. 권용주, 정진수, 박윤복, 강민정 (2003c). 선언적 과학 지식의 생성과정에 대한 과학철학적 연구: 귀납적, 귀추적, 연역적 과정을 중심으로. 한국과학교육학회지, 23(3), 215-228
  7. 권용주, 최상주, 박윤복, 정진수 (2003d). 대학생들의 귀납적 탐구에서 나타난 과학적 사고의 유형과 과정. 한국과학교육학회지, 23(3), 286-298
  8. 매일경제지식부, 한숭희 (2000). 학습혁명보고서. 서울: 매일경제신문사
  9. 박종원 (1998). 과학활동에서 연역적 사고의 역할. 한국과학교육학회지, 18(1), 1-17
  10. 정진수 (2004). 과학적 가설 생성에 대한 삼원 귀추 모형의 개발과 적용. 한국교원대학교 박사학위논문
  11. Adey, P., Askoko, H., & Black, P. (1994). 1994 Revision of the National Curriculum: Implication of Research on Children's Learning of Science, a report to SCAA. London: King's College
  12. Anderson, D., & Biddle, B. (Eds.) (1991). Knowledge for policy: Improving education through research. London: Falmer
  13. Clarkson, S. G., & Wright, D. K. (1992). An appraisal of practical work of in science education. School Science Review, 74(266), 39-42
  14. Darian, S. (1995). Hypotheses in introductory science texts. International Review of Applied Linguistics in Language Teaching, 33(2), 83-109
  15. Fischer, H. R. (2001). Abductive reasoning as a way of worldmaking. Foundations of Science, 6, 361-383
  16. Germann, P. J., & Odom, A. L. (1996). Student performance on asking questions, identifying variables, and formulating hypotheses. School Science & Mathematics, 96(4), 192-201
  17. Hackling, M. W., & Garnett, P. J. (1995). The development of expertise in science investigation skills. Australian Science Teachers Journal, 41(4), 80-86
  18. Hanson, N. R. (1958). Patterns of discovery: An inquiry into conceptual foundations of science. Cambridge, UK: Cambridge University Press
  19. Harwood, W. (2004). An activity model for scientific inquiry. The Science Teacher, 71(1), 44-46
  20. Hempel, C. C. (1966). Philosophy of natural science. Upper Saddle River, N.J: Prentice Hall
  21. Hodson, D. (1992). Redefining and reorientating practical work in school science. School Science Review, 73(264), 65-78
  22. Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thargard, P. R. (1986). Induction: Processes of Inference, Learning, and Discovery. Cambridge, MA: MIT Press
  23. Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 196-217
  24. Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1-48
  25. Klauer, K. J., & Phye, G. D. (1994). Cognitive Training for Children: A Developrnental Program of Inductive Reasoning and Problem Solving, Seattle, WA: Hogrefe & Huber
  26. Laudan, L. (1977). Progress and its problems. Berkely, CA: University of California Press
  27. Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont. CA: Wadsworth Publishing Company
  28. Lawson, A. E. (2000). The generality of hypothetico-deductive reasoning: making scientific thinking explicit. The American Biology Teacher, 62(7), 482-495
  29. Lawson, A. E. (2002). What does Glalileo's discovery of Jupiter's moons tell us about the process of scientific discovery? Science & Education, 11, 1-24
  30. Lazarowitz, R., & Tamir, R. (1994). Resesarch on using laboratory instruction in science. In D. Gabel (Ed.), Handbook of Research on Science Teaching and Learning (pp. 94-128). New York: Macmillan
  31. Leach, J., & Scott, P. (1995). The demands of learning science concepts - issues of theory and practice. School Science Review, 76(277), 47-51
  32. Losee, J. (2001). A historical introduction to philosophy of science (4th Ed.), London: Oxford University Press
  33. Martin, M. (1972). The concepts of science education. Scott, Foresman and Company
  34. McPherson, G. R. (2001). Teaching & learning the scientific method. The American Biology Teacher, 63(4), 242-245
  35. Njoo, M, & de Jong, T. (1993). Exploratory learning with a computer simulation for control theory: Learning processes and instructional support. Journal of Research in Science Teaching, 30, 821-844
  36. Peter, S. (1992). Children's language and assessing their skill in formulating testable hypotheses. British Educational Research Journal, 18(1), 73-86
  37. Popper, C. (1963). Conjectures and Refutation. NY: Basic Books
  38. Qualter, A, Strang, J., & Swatton, P. (1990). Explanation- a Way of Learning Sciecne. Oxford: Blackwell
  39. Ross, W. D. (1949). Aristotle's prior an posterior analytics, London: Oxford University Press
  40. Sternberg, R. J., & Gardner, M K. (1983). Unities in inductive reasoning, Journal of Experimental Psychology: General, 112(1), 80-116
  41. Tosteson, J. L. (1997). The scientific world view, information technology, and science education: Closing the gap between knowledge-generation and knowledge-consumption. Journal of Science Education and Technology, 6(4), 273-284
  42. van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C (1994). The think aloud method: A practical guide to modeling cognitive processes, San Diego, CA: Academic press
  43. Watson, R. (2000). The role of practical work. In M Monk & J. Osborne (Eds.). Good Practice in Science Teaching: What Research has to Say. Buckingham: Open University Press, 57-71
  44. Woolnough, B. E. (1994). Why students choose physics, or reject it. Physics Educationm, 29, 368-374
  45. Woolnough B. E. (1995). Switching students onto science. British Council Science Education Newsletter, London
  46. Yang, I. H. (2003). A study on students scientific reasoning in solving pendulum task. Journal of Korean Association for Research in Science Education, 23(4), 430-441
  47. Yang, I. H., Kwon, Y. J., Kim Y. S., Jang, M. D., Jeong, J. W. & Park, K. T (2002). Effects of students' prior knowledge on scientific reasoning in density. Journal of Korean Association for Research in Science Education, 22(2). 215-236