• Title/Summary/Keyword: problem solving approach

Search Result 864, Processing Time 0.083 seconds

A Brain-Based Approach to Science Teaching and Learning: A Successive Integration Model of the Structures and Functions of Human Brain and the Affective, Psychomotor, and Cognitive Domains of School Science (뇌 기능에 기초한 과학 교수학습: 뇌기능과 학교 과학의 정의적심체적인지적 영역의 연계적 통합 모형)

  • Lim Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.1
    • /
    • pp.86-101
    • /
    • 2005
  • In this study, a brain-basrd model for science teaching and learning was developed based on the natural processes which human acquire knowledge about a natural object or on event, the major domains of science educational objectives of the national curriculum, and the human brain's organizational patterns and functions. In the model, each educational objective domain is related to the brain regions as follows: The affective domain is related to the limbic system, especially amygdala of human brain which is involved in emotions, the psychomotor domain is related to the occipital lobes of human brain which perform visual processing, temporal lobes which perform functions of language generating and understandng, and parietal lobes which receive and process sensory information and execute motor activities of body, and the cognitive domain is related to the frontal and prefrontal lobes which are involved in think-ing, planning, judging, and problem solving. The model is a kind of procedural model which proceed fiom affective domain to psychomotor domain, and to cognitive domain of science educational objective system, and emphasize the order of each step and authentic assessment at each step. The model has both properties of circularity and network of activities. At classrooms, the model can be used as various forms according to subjects and student characteristics. STS themes can be appropriately covered by the model.

  • PDF

An Empirical Analysis of the Crisis and Emergency Management Research Trend in the Field of Public Administration: 1987-2007 (한국 행정학에서의 위기관리 연구경향 실증분석: 1987년부터 2007년까지의 연구논문을 중심으로)

  • Lee, Jae-Eun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.300-308
    • /
    • 2009
  • This article analyzed the crisis and emergency management research trend in the field of public administration in Korea from 1987 to 2007. The research purpose of this paper is to empirically evaluate the state of art in the crisis and emergency management research trend and explore research topics and methodology for future studies. According to empirical analysis, the main research results are as follows. First, almost all research papers over 80% have been written after 1998 and, especially, 67.6% of all papers have been published from 2003-2007. Second, recently lots of scholars are more interested in the problem solving prescriptive topics than normative and theory orientation. Third, in the Korean public administration, 74.6% of research papers which dealt with crisis, have investigated the disaster crisis including natural and man-made disasters, among conventional security crisis, disaster crisis, critical infrastructure crisis, and living safety crisis. Finally, so far, crisis and emergency management research trend in Korean public administration have consisted mainly of the papers with more descriptive approach and literature survey than empirical approach and survey research.

Re-approach to the Concept of Data Literacy and Its Application to Library Information Services (데이터 리터러시 개념에 대한 재접근 및 도서관 정보서비스에의 적용)

  • Lee, Jeong-Mee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.1
    • /
    • pp.159-179
    • /
    • 2019
  • The purpose of this study is to re-approach the concept of data literacy, to describe the differences with other literacies along with the redefined concept of data literacy. Also, it is tried to find out why and how to use data literacy for library and information services. Research has shown that data literacy plays a central role in interacting with other literacy concepts, and should be understood as a data-driven problem-solving ability that is essential for the future human society. Based on these concept definitions, we propose the application of data literacy to library information service in terms of education service and research support service. In this study, data literacy is defined as the ability to utilize data needed by users in a data - based society, is to explain why data literacy is the ability to utilize data for users in modern society by distinguishing differences from other literacy. This concludes with a discussion and proposal on what library information services can be implemented.

Mobile Robot-based Leak Detection and Tracking System for Advanced Response and Training to Hazardous Materials Incidents (화학물질 저장시설의 사고대응 및 훈련을 위한 로봇기반 누출감지 및 추적시스템)

  • Park, Myeongnam;Kim, Chang Won;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.17-27
    • /
    • 2019
  • In recent years, dangerous materials and gas leak accidents have been frequently occurred. The hazardous materials storage facility accidents are not rapidly controlled when a leak is detected, unlike other chemical plants can be controled. Externally, the human has to approach and respond to the source of leaking directly. As a result, the human and material damage are likely to larger result in the process. The current approach has been passive response after ringing the alarm. In this study, the suggested tracking system of the leak resource is designed system to track the resource actively by utilizing the mobile sensor robot platform, which can be made easily through recent rapid development technology, is verified through prototype system. Thus, a suggested system should pave the way for minimizing the spread and damage of the accident based on the exact site situation of the initial leak and quick and early measures.

Model of Future Teacher's Professional Labor Training (Art & Craft Teacher)

  • Tytarenko, Valentyna;Tsyna, Andriy;Tytarenko, Valerii;Blyzniuk, Mykola;Kudria, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.21-30
    • /
    • 2021
  • Economic transformations have led to an increase in the role of creative assets and their central role in public life. Changes in creative activity have led to a change in the organization of the work of institutes engaged in the training of specialists, in particular teachers of labor education. Methods and approaches to training determine the development of creative industries, being the basis for models of professional training of future teachers of labor training. The purpose of an article was to develop a modern model of professional training of future teachers of labor training based on the concept of creative economy. The methodology is based on the concepts of holistic craft and creative economy. Based on the integration of pedagogical learning models "Craft as design and problem-solving", "Craft as skill and knowledge building", "Craft as product-making" and "Craft as self-expression" developed and experimentally confirmed the conceptual model of professional training of future teachers of labor training. The proposed model forms a practitioner with professional, technical, digital and creative skills who is able to transfer the experience to students. The training course "Creativity and creative thinking" has been developed. The model provided for the development of a course based on the strategy of developing professional creativity, flexibility, improvisation, openness, student activity, joint practice, student-oriented approach. The practical value implies the adaptation of the developed model of professional training of future teachers of labor education during the training of teachers in higher education, which is confirmed in the experiment.

Meso-scale based parameter identification for 3D concrete plasticity model

  • Suljevic, Samir;Ibrahimbegovic, Adnan;Karavelic, Emir;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.55-78
    • /
    • 2022
  • The main aim of this paper is the identification of the model parameters for the constitutive model of concrete and concrete-like materials capable of representing full set of 3D failure mechanisms under various stress states. Identification procedure is performed taking into account multi-scale character of concrete as a structural material. In that sense, macro-scale model is used as a model on which the identification procedure is based, while multi-scale model which assume strong coupling between coarse and fine scale is used for numerical simulation of experimental results. Since concrete possess a few clearly distinguished phases in process of deformation until failure, macro-scale model contains practically all important ingredients to include both bulk dissipation and surface dissipation. On the other side, multi-scale model consisted of an assembly micro-scale elements perfectly fitted into macro-scale elements domain describes localized failure through the implementation of embedded strong discontinuity. This corresponds to surface dissipation in macro-scale model which is described by practically the same approach. Identification procedure is divided into three completely separate stages to utilize the fact that all material parameters of macro-scale model have clear physical interpretation. In this way, computational cost is significantly reduced as solving three simpler identification steps in a batch form is much more efficient than the dealing with the full-scale problem. Since complexity of identification procedure primarily depends on the choice of either experimental or numerical setup, several numerical examples capable of representing both homogeneous and heterogeneous stress state are performed to illustrate performance of the proposed methodology.

Effective Simulation Control for Deformable Object (변형 가능한 물체를 위한 효과적인 시뮬레이션 제어)

  • Hong, Min;Choi, Min-Hyung
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • To achieve a natural and plausible interaction with deformable objects and to setup the desirable initial conditions of simulation, user should be able to define and control the geometric constraints intuitively. In addition, user should be able to utilize the simulation as a problem solving platform by experimenting various simulation situations without major modification of the simulator. The proposed physically based geometric constraint simulation system solves the problem using a non-linear finite element method approach to represent deformable objects and constraint forces are generated by defining geometric constraints on the nodes of the object to maintain the restriction. It allows user to define and modify geometric constraints and an algorithm converts these geometric constraints into constraint forces which seamlessly integrate controllability to the simulation system. Simulator can handle linear, angular, inequality based geometric constraints on the objects. Our experimental results show that constraints are maintained in the tight error bound and preserve desired shape of deformable object during the entire simulation.

  • PDF

Solutions for Design Creativity Barriers (디자인 창의성 저해요소의 해결방안)

  • Kim, Dong-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.15-27
    • /
    • 2020
  • In the design process that focuses on problem solving, in general, two or three barriers to design creativity appear at the same time and are linked to increase difficulty. Because the design problem always arises in unusual, unique, weird, and difficult to define, it is not possible to extract the correct answer through the formula and the answer is always plural. This study aims to present solutions and prove their effectiveness as a follow-up study that seeks to overcome the representative obstacles to design creativity discussed in the previous study. To this end, a qualitative study was conducted to find solutions to the obstacles suggested in the previous study and to devise key solutions(creativity development cards). At the same time, a quantitative research methodology using experiments and statistical analysis was adopted. After grasping the core characteristics of an object using the creativity development card, it was able to approach the creative solution by utilizing the reductive analysis of the original such as transformation of the core characteristics, reconsideration of essential problems and intentional differentiation. As a result, it was confirmed that the proposed solutions were effective not only as a method of overcoming the barriers to design creativity, but also in improving creativity.

Network Design with Non-Linear Optimization Method (비선형(非線型) 최적화기법(最適化技法)에 의한 가로망설계(街路網設計))

  • Jang, Hyun Bong;Park, Chang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.165-172
    • /
    • 1988
  • An optimal network design method using continuous form of design variables is considered. Modified Hooke-and-Jeeves algorithm has been implemented in order to solve nonlinear progamming problem which is approximately equivalent to the real network design problem (NDP) with system. efficiency criteria(i. e. travel time and costs) and construction cost as objective function. Various forms of construction cost function, locations of initial solution, and dimension of initial step size of link improvement are taken into account to show the validity of this approach. The results obtained are quite promising in terms of the numbers of evaluations in solving NDP, and the speed of convergence. Finally, some techniques in choosing efficient intial solution, initial step size and approximation are given.

  • PDF

Aggregating Prediction Outputs of Multiple Classification Techniques Using Mixed Integer Programming (다수의 분류 기법의 예측 결과를 결합하기 위한 혼합 정수 계획법의 사용)

  • Jo, Hongkyu;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.71-89
    • /
    • 2003
  • Although many studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective in the classification problems. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques. This study proposes the linearly combining methodology of different classification techniques. The methodology is developed to find the optimal combining weight and compute the weighted-average of different techniques' outputs. The proposed methodology is represented as the form of mixed integer programming. The objective function of proposed combining methodology is to minimize total misclassification cost which is the weighted-sum of two types of misclassification. To simplify the problem solving process, cutoff value is fixed and threshold function is removed. The form of mixed integer programming is solved with the branch and bound methods. The result showed that proposed methodology classified more accurately than any of techniques individually did. It is confirmed that Proposed methodology Predicts significantly better than individual techniques and the other combining methods.

  • PDF