• Title/Summary/Keyword: problem analysis

Search Result 16,360, Processing Time 0.052 seconds

ON COMPLEXITY ANALYSIS OF THE PRIMAL-DUAL INTERIOR-POINT METHOD FOR SECOND-ORDER CONE OPTIMIZATION PROBLEM

  • Choi, Bo-Kyung;Lee, Gue-Myung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.2
    • /
    • pp.93-111
    • /
    • 2010
  • The purpose of this paper is to obtain new complexity results for a second-order cone optimization (SOCO) problem. We define a proximity function for the SOCO by a kernel function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOCO by using the proximity function and give its complexity analysis, and then we show that the new worst-case iteration bound for the IPM is $O(q\sqrt{N}(logN)^{\frac{q+1}{q}}log{\frac{N}{\epsilon})$, where $q{\geqq}1$.

A Study on Numerical Analysis of Impact Behavior by the Modified GPA Method (수정 GPA법을 이용한 층돌거동의 수치해석에 대한 연구)

  • 김용환;김용석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.189-196
    • /
    • 2004
  • A modified generalized particle algorithm, MGPA, was suggested to improve the calculation efficiency of standard SPH Method in numerical analysis of high speed impact behavior. MGPA had a new weight function to reduce computation time. The efficiency of this method was proven through calculation for the sample problems of one dimensional rod impact problem and two dimensional plate impact problem. The MGPA method reduced the calculation error and stress oscillation near the boundaries. The validity of this approach was shown by the comparison with ABAQUS results in two dimensional plate impact problem.

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Development of Decision Support System Using Decision Analysis Cycle (의사결정분석사이클을 활용한 기업경영 의사결정지원체계 (DSS) 개발 : DACUL)

  • Choe, Su-Dong;Kim, Jae-Gyeong;Jeong, Byeong-Ho;Kim, Seong-Hui
    • IE interfaces
    • /
    • v.2 no.1
    • /
    • pp.47-58
    • /
    • 1989
  • Many decision problems in the real world have uncertainty and complexity. In many cases, decision makers do not have decision-analytic knowledge enough to solve a given decision problem. This paper developes a Decision Support System(DSS) that can be used for structuring decision problem into decision tree based on the concept of influence diagram and analyzing the decision problem by following Decision Analysis Cycle. This study suggests a DSS system(DACUL) in order to implement Decision Analysis Cycle using Lotus1-2-3. DACUL system has been developed in IBM XT/AT compatible PC.

  • PDF

A numerical method for the limit analysis of masonry structures

  • Degl'Innocenti, Silvia;Padovani, Cristina
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.1-20
    • /
    • 2004
  • The paper presents a numerical method for the limit analysis of structures made of a rigid no-tension material. Firstly, we formulate the constrained minimum problem resulting from the application of the kinematic theorem, which characterizes the collapse multiplier as the minimum of all kinematically admissible multipliers. Subsequently, by using the finite element method, we derive the corresponding discrete minimum problem in which the objective function is linear and the inequality constraints are linear as well as quadratic. The method is then applied to some examples for which the collapse multiplier and a collapse mechanism are explicitly known. Lastly, the solution to the minimum problem calculated via numerical codes for quadratic programming problems, is compared to the exact solution.

Development of stamping analysis process for formability prediction of aluminum alloy sheets (알루미늄판재 성형성 예측을 위한 평면이방성 해석기술개발)

  • Kim, Y.G.;Chung, W.J.;Kim, S.T.;Moon, M.S.;Yoon, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.304-307
    • /
    • 2006
  • A plane stress yield function YLD2000(Yoon et al., 2000) is applied to the finite element analysis S/W Z-Stamp because it is required to conduct proper consideration of aluminum alloy which has anomalous behavior. In the previous study, verification of the yield function and developed S/W is implemented. In this paper, two real parts of automobile body are additionally considered to verify the validity of Z-Stamp. The one is the benchmark problem #2 of Numisheet 2005 and the other is a small member part. In case of benchmark problem, formability simulation result and try-out result are compared with each other. In case of the small member part, formability analysis is implemented to predict the problem during the developing time.

  • PDF

A New Computational Approach for the Stability Analysis of the Linguistic Fuzzy Control Systems (컴퓨터연산을 통한 언어형 퍼지 제어 시스템의 새로운 안정도 해석)

  • Kim, Eun-Tai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.18-25
    • /
    • 2002
  • In this paper, a novel computational approach for the stability analysis of the linguistic fuzzy system is proposed. The suggested analysis method is easily implemented by the recently spotlighted convex optimization techniques called Linear Matrix Inequalities (LMI). Compared with the previous works, the new method proposed herein is more relaxed and is applicable to not only the stabilization problem but also to the set-point regulation problem. Finally, the applicability of the suggested methodology is highlighted via computer simulations.

A SCM System Selection Problem using AHP Technique based on Benefit/Cost Analysis (편익/비용분석 기반의 AHP 기법을 이용한 SCM 시스템 선정 모델)

  • Seo, Kwang-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • An optimal selection problem of SCM system is one of the critical issues for the company's competitiveness and performance under global economy. This paper presents a hierarchy model consisted of characteristic factors for introducing SCM system and an AHP (Analytic Hierarchy Process) based decision-making model for SCM system evaluation and selection. The proposed model can systematically construct the objectives of SCM system selection to meet the business goals. This paper focuses on selecting an optimal SCM system considering both all decision factors and sub-decision factors of a hierarchy model. Especially, the benefit/cost analysis is applied to choose SCM system. A case study shows the feasibility of the proposed model and the model can help a company to make better decision-making in the SCM system selection problem.

A state space meshless method for the 3D analysis of FGM axisymmetric circular plates

  • Wu, Chih-Ping;Liu, Yan-Cheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.161-182
    • /
    • 2016
  • A state space differential reproducing kernel (DRK) method is developed for the three-dimensional (3D) analysis of functionally graded material (FGM) axisymmetric circular plates with simply-supported and clamped edges. The strong formulation of this 3D elasticity axisymmetric problem is derived on the basis of the Reissner mixed variational theorem (RMVT), which consists of the Euler-Lagrange equations of this problem and its associated boundary conditions. The primary field variables are naturally independent of the circumferential coordinate, then interpolated in the radial coordinate using the early proposed DRK interpolation functions, and finally the state space equations of this problem are obtained, which represent a system of ordinary differential equations in the thickness coordinate. The state space DRK solutions can then be obtained by means of the transfer matrix method. The accuracy and convergence of this method are examined by comparing their solutions with the accurate ones available in the literature.

Real Time Estimation in 1-Dimensional Temperature Distribution Using Modal Analysis and Observer (모드해석과 관측기를 이용한 1차원 온도분포의 실시간 예측)

  • An, Jung-Yong;Park, Yeong-Min;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.195-201
    • /
    • 2001
  • An inverse heat conduction problem(IHCP) arises when unknown heat fluxes and whole temperature field are to be found with temperature measurements of a few points. In this paper, observers are proposed as solution algorithm for the IHCP. A 1-dimensional heat transfer problem is modeled with modal analysis and state space equations. Position of the heat source is estimated through test heat inputs and the autocorrelation among a few of temperature data. The modified Bass-Gura method is used to design a state observer to estimate the intensity of heat source and the whole temperature field of a 1-dimensional body. To verify the reliability of this estimator, analytic solutions obtained from the proposed method are compared.