• Title/Summary/Keyword: problem Solving

Search Result 7,087, Processing Time 0.031 seconds

The Impact of the Perceived Level of Problem Solving on the Performance of Project Completeness in Programming Education (EPL을 활용한 프로그래밍 교육에서 문제해결 수준이 프로젝트 완성도에 미치는 영향)

  • Jang, Yun-Jae;Kim, Ja-Mee;Lee, Won-Gyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.6
    • /
    • pp.41-51
    • /
    • 2011
  • Informatics curriculum has been revised for informatics principles and concepts to effectively teach. According to the revised curriculum, researches are verifying the educational effects of algorithmic thinking and problem-solving abilities using programming language by applying it to various area. However, researches in programming education considering the level of student are yet incomplete. This research has analyzed the impact of the perceived level of problem solving on the performance of project completeness. As results of difference of project completeness, a high perceived level of problem solving group's performance of project completeness was higher than a low perceived level of problem solving group's one. Analysis of the impact of the perceived level of problem solving on the performance of project completeness, 'problem finding' factor had a significant impact. This research suggested the importance of 'problem finding' and self-reflecting introspective 'reviewing' stages in problem solving process using programming language.abstract of your study in English. This space is for the abstract of your study in English. This space is for the abstract of your study in English.

  • PDF

The Research on PBL Application in Mathematics Method Course (문제중심학습(PBL)에서 초등예비교사들의 문제해결과정)

  • Lee, Kwang-Ho;Jang, Eun-Ha
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.91-106
    • /
    • 2012
  • This study reports pre-service teachers' problem solving process on the problem-based learning(PBL) employed in an elementary mathematics method course. The subjects were 6 pre-service teachers(students). The data were collected from classroom observation. The research results were described by problem solving stages. In understanding the problem stage, students identified what problem stand for and made a problem solving planned sheet. In curriculum investigation stage, students went through investigation and re-investigation process for solving the task. In problem solving stage, students selected the best strategy for solving the task and presented and shared about problem solving results.

The Effect on Motivation and Problem Solving Ability of Problem Based Storytelling Programming Learning (문제중심 스토리텔링 프로그래밍 학습이 학습동기 및 문제해결능력에 미치는 효과)

  • Gu, JungMo;Park, Jung-Ho;Song, JeongBeom;Bae, Youngkwon;Ahn, SeongHun;Lee, TaeWuk
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 2009
  • Problem-solving ability have become extremely important in today's world. Programming may help to induce problem-solving ability. However, programming may give cognitive overload and offense against learning motivation. Therefore it is necessary that we should develope strategies to increase motivation on elementary programming classes. We developed a programming learning design and supporting system that combine problem-based learning and storytelling to induce motivation and problem solving ability. And then, we implemented the developed course in elementary school. The result of the research shows that the developed programming classes had positive effect on the development of elementary student's motivation and problem-solving ability.

  • PDF

An Analysis on Contents Related to Problem Solving in the 7th Elementary Mathematics Curriculum and Instructional Materials (문제해결과 관련된 제7차 초등학교 수학과 교육과정 및 교과용 도서 분석)

  • Pang, Jeong-Suk;Kim, Sang-Hwa
    • School Mathematics
    • /
    • v.8 no.3
    • /
    • pp.341-364
    • /
    • 2006
  • This paper analyzed contents related to problem solving in the 7th elementary mathematics curriculum in conjunction with main changes in the next curriculum under discussion. This paper then provided detailed analyses of textbooks and workbooks in terms of principal contents, problem solving strategies, content areas, and problem types in order to look closely at how such instructional materials would put the vision of the curriculum into action. It is expected that many issues and suggestions stemming from the analyses will serve basic information to develop next curriculum and its concomitant instructional materials in a way to fostering students' problem solving ability.

  • PDF

Knowledge is Key to Variability in Solving Algebraic Word Problems

  • Ng, Swee Fong
    • Research in Mathematical Education
    • /
    • v.15 no.4
    • /
    • pp.311-325
    • /
    • 2011
  • In this paper I propose that teaching students the most efficient method of problem solving may curtail students' creativity. Instead it is important to arm students with a variety of problem solving heuristics. It is the students' responsibility to decide which heuristic will solve the problem. The chosen heuristic is the one which is meaningful to the students.

Elementary Gifted Students' Creative Problem Solving Through Fermi Estimate (초등 영재의 페르미 추정을 통한 창의적 문제해결력 분석)

  • Heo, Jung-In;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.40 no.2
    • /
    • pp.167-181
    • /
    • 2024
  • This study explored the characteristics of elementary gifted students' creative problem-solving skills combining creativity and problem-solving ability based on their work on Fermi estimation problems. The analysis revealed that gifted students exhibited strong logical validity and breadth but showed some weaknesses in divergent thinking abilities (fluency, flexibility, originality).

Individual Strategies for Problem Solving

  • Revathy Parameswaran
    • Research in Mathematical Education
    • /
    • v.9 no.1 s.21
    • /
    • pp.11-24
    • /
    • 2005
  • Problem solving is an important aspect of learning mathematics and has been extensively researched into by mathematics educators. In this paper we analyze the difficulties students encounter in various steps involved in solving problems involving physical and geometrical applications of mathematical concepts. Our research shows that, generally students, in spite of possessing adequate theoretical knowledge, have difficulties in identifying the hidden data present in the problems which are crucial links to their successful resolutions. Our research also shows that students have difficulties in solving problems involving constructions and use of symmetry.

  • PDF

A Face Optimization Algorithm for Optimizing over the Efficient Set

  • Kim, Dong-Yeop;Taeho Ahn
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 1998
  • In this paper a face optimization algorithm is developed for solving the problem (P) of optimizing a linear function over the set of efficient solutions of a multiple objective linear program. Since the efficient set is in general a nonconvex set, problem (P) can be classified as a global optimization problem. Perhaps due to its inherent difficulty, relatively few attempts have been made to solve problem (P) in spite of the potential benefits which can be obtained by solving problem (P). The algorithm for solving problem (P) is guaranteed to find an exact optimal or almost exact optimal solution for the problem in a finite number of iterations.

  • PDF

The effects of step learning according to level mainly performed at math room on the growth of problem-solving ability (수학실 중심의 수준별 단계학습이 문제해결력에 미치는 영향)

  • 박기석;신숙철
    • Journal of the Korean School Mathematics Society
    • /
    • v.2 no.1
    • /
    • pp.79-91
    • /
    • 1999
  • The aim of this study focused on student-centered learning not teacher-centered teaching in middle school math classes. This study was performed to check the growth of students' problem-solving abilities, learning attitudes and changes in learning motivation among affective characteristics. The results of this study is as followings: 1) The controlled group a heterogeneous group which had classes in a math room, had more meaningful growth than the uncontrolled group. The results of the study show that the problem-solving abilities of the high-leveled group were better than those of the low-leveled group. 2) The controlled group has shown meaningful difference in their mean in learning aptitude test and attitude test converted their score into 100 points than uncontrolled group, and various kinds of learning materials suitable for problem solving are proved as a good learning factor to induce students' motivation and interest. 3) Students prefer to have classes in a math room to the small-sized and large-numbered classrooms. The atmosphere in a math room is more suitable to improving their problem-solving abilities. In this context, the classes performed in a math room are fairly positive. Consequently, students' leveled learning activities performed in a math room can get their learning motivation and attention from those who are lack of interest and think math is difficult and be effective to increase their problem-solving abilities as a learning method for acquiring the whole course of solving the problems.

  • PDF

Development of Nonlinear Programming Approaches to Large Scale Linear Programming Problems (비선형계획법을 이용한 대규모 선형계획해법의 개발)

  • Chang, Soo-Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.131-142
    • /
    • 1991
  • The concept of criterion function is proposed as a framework for comparing the geometric and computational characteristics of various nonlinear programming approaches to linear programming such as the method of centers, Karmakar's algorithm and the gravitational method. Also, we discuss various computational issues involved in obtaining an efficient parallel implementation of these methods. Clearly, the most time consuming part in solving a linear programming problem is the direction finding procedure, where we obtain an improving direction. In most cases, finding an improving direction is equivalent to solving a simple optimization problem defined at the current feasible solution. Again, this simple optimization problem can be seen as a least squares problem, and the computational effort in solving the least squares problem is, in fact, same as the effort as in solving a system of linear equations. Hence, getting a solution to a system of linear equations fast is very important in solving a linear programming problem efficiently. For solving system of linear equations on parallel computing machines, an iterative method seems more adequate than direct methods. Therefore, we propose one possible strategy for getting an efficient parallel implementation of an iterative method for solving a system of equations and present the summary of computational experiment performed on transputer based parallel computing board installed on IBM PC.

  • PDF