• Title/Summary/Keyword: printed sensor

Search Result 152, Processing Time 0.022 seconds

Thick Film Gas Sensor Based on PCB by Using Nano Particles (나노 입자를 이용한 PCB 기반 후막 가스 센서)

  • Park, Sung-Ho;Lee, Chung-Il;Song, Soon-Ho;Kim, Yong-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.59-63
    • /
    • 2007
  • This paper presented a low-cost thick film gas sensor module, which was based on simple PCB (Printed Circuit Board) process. The proposed sensor module included a $NO_2/H_2$ gas sensor, a relative humidity sensor, and a heating element. The $NO_2/H_2$ gas and relative humidity sensors were realized by screen-printing $SnO_2,\;BaTiO_3$ nano-powders on IDTS (Interdigital Transducer) of a PCB substrate, respectively. At first 1% $H_2$ gas flowed into the sensor chamber. After 4 min, air filled the chamber while $H_2$ gas flow stopped. This experiment was performed repeatedly. The Identical procedure was used for the $NO_2$ detection. The result for sensing $H_2$ gas showed the increase of voltage from 0.8V to 3.5V due to the conductance increase and its reaction response time by hydrogen flow was 65 sec. $NO_2$ sensing results showed 2.7 V voltage drop due to the conductance decrease and its response time was 3 sec through a voltage monitoring.

  • PDF

Voltammetric Determination of Dopamine with the N-Hydroxysuccinimide Modified Carbon Paste Electrode (N-히드록시숙신이미드로 수식한 탄소반죽전극을 이용한 도파민의 전기화학적 측정)

  • Yoo Jae Hyun;Yoo Byung Wook;Kim Soon Shin;Uhm Jung Hee;Nam Hakhyun;Cha Geun Sig
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.109-112
    • /
    • 2001
  • An activated carbon paste electrode was modified with the N-Hydroxysuccinimide(NHS) layer and applied to determine the dopamine in the presence of an excess ascorbic acid using square-wave voltammetry. The electrochemical properties of the modified electrode were examined in the solution containing dopamine/ascorbic acid using cyclic voltammetry(CV): the separation between the oxidation peaks of dopamine and ascorbic acid was largely dependent on the pH of the sample solution and became maximum at pH 4.0. Hence, the square-wave voltammetric determination of dopamine was carried out in a pH 4.0, 100mM phosphate buffer saline(PBS) containing 140mM NaCl. The detection limit and response slop were improved from $1.0{\mu}M\;to\;5.0\times10^{-2}{\mu}M\;and\;from\;0.93{\mu}A/{\mu}M\;to\;6.1{\mu}A/{\mu}M$, respectively, upon modification of the electrode surface by NHS.

Design of a lighting system for PCB visual pattern inspection (인쇄회로기판의 패턴 검사용 조명장치 설계)

  • Na, Hyun-Chan;Rho, Byung-Ok;Ryu, Yung-Kee;Cho, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Austomated visual inspection(AVI) capability has become an important key component in the automated manufacturing system. In such a visual inspection system an intensity(or color) image of a scene is quickly affected by optical property of objects, condition and roughness of surface, lens and filters, image sensor property and lighting system. In particular, the lighting system disign is the most important factor, since it affects overall performance of the visual system. For fast and cheap automated visual inspection system it is important to obtain the good image quality which results from careful attention to the design of the lighting system. In this paper, the lighting subsystem of AVI system is analysed for the inspection of printed circuit board(PCB) patterns. The spectral reflectance of materials, which are composed of PCB, is measured for choosing the light source. The reflection property is theoretically obtained by a reflection model and also obtained by experiments which measure intensity with varying the viewing direction of image sensor and the lighting direction of illuminator. The illumination uniformity of a ring-type illuminator. The lighting system is designed based upon the experimental results and theoretial analysis.

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Development of Concentration Control System for Ni-W Alloy Plating Solution (니켈-텅스텐 합금 도금 공정액 농도 제어 시스템 개발)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.273-279
    • /
    • 2016
  • This paper deals with a control system with a concentration sensor for Ni-W alloy plating solutions. The printed circuit board market has increased with the development of the electronics industry. Gold consumption has also increased dramatically. Various studies of composite plating solutions have been conducted because of the expense of gold. In comparison, the development of sensors capable of measuring a composite plating solution in real-time is still insufficient. Furthermore, there are few systems that can measure and control the concentration of the solution precisely. This study developed a sensor and system to control the concentration of composite plating solution accurately. The sensors were developed based on a spectrophotometric method and a feedback control method was applied in this system.

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

Development of Contact-Type Thickness Measurement Machine using LVDT Sensors (LVDT센서를 이용한 접촉식 두께자동측정기 개발)

  • Shin, Ki-Yeol;Hwang, Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, we developed an automated contact-type thickness measurement machine that continuously and precisely measures the thickness of a PCB module product using multi-LVDT sensors. The system contains a measurement part to automatically measure the thickness in real time according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The sensors were calibrated before assembly in the measuring machine, and precision and accuracy performance tests were also performed to reduce uncertainty errors in the measurement machine. In the calibration test, the precision errors of the LVDT sensor were determined to be $1-3{\mu}m$ as 0.1% at the measuring range. A measurement error of 0.8 mm and 1.0 mm thickness test standards were found to be $1{\mu}m$ and $4{\mu}m$, and the standard deviations of two 1.0 mm products were measured as $14{\mu}m$ and $8{\mu}m$, respectively. In the measurement system analysis, the accuracies of test PCB standards were found to be $2{\mu}m$ and $3{\mu}m$, respectively. From the results of gage repeatability and reproducibility (R & R) crossed, we found that the machine is suitable for the measurement and process control in the mass production line as 7.92% of total gage R & R and in seven distinct categories. The maximum operating speed was limited at 13 pcs/min, showing a value good enough to measure.

Conformal Design of PDMS Mold for Arbitrary Skin Surface with 3D Printing (3D Printing 공정을 이용한 PDMS Mold 제작)

  • Kim, KwangYoon;Park, SukHee;Lee, HanBit;Lee, NakGyu;Yoon, JongHun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.553-560
    • /
    • 2017
  • 3D printing technology has been a great interest in human bio-interfaces and human-like robotics since they require arbitrary and adaptive manufacturing. This research mainly concerns the 3D fabrication of a packed biosensor using elastomeric sheets made of PDMS. It is essential to design the PDMS molding with 3D printing since, in the case of biosensors, it should not only produce a conformal shape depending on an arbitrary skin surface but also guarantee a uniform thickness distribution during solidification in the PDMS prepolymer solution. To satisfy the characteristics of the PDMS molding, such as flexibility in the de-molding and stiffness in the solidification processes, multi-materials have been selectively applied to the PDMS molding design, which has been validated with finite element analyses and compared with the 3D printed molding.

An Implementation of Remote Monitoring System for Control Relay (제어용 계전기의 원격감시시스템 구현)

  • Chang, Yong-Hoon;Nam, Jae-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2100-2106
    • /
    • 2016
  • The automation system uses PLC to monitor the manufacturing process status of the production product and processes the sensor information transmitted from the sensor. In this paper, we propose a remote surveillance system to monitor the status of control relay used in automation system. The proposed system consists of a control relay module, a one-chip processor module, a computer monitoring system, and a database system that inputs and manages the details of the control relay. The computer monitoring system is configured to monitor the operating condition and life time of the control relay. The database is configured so that the input date of the control relay can be input and corrected, and the operating state information of the control relay can be automatically printed. In the remote monitoring system, the failure status of the control relay is recognized in real time, and the time required for normal operation can be minimized by quickly replacing faulty parts.

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.