• 제목/요약/키워드: principal component analysis(PCA)

검색결과 1,239건 처리시간 0.027초

A Fault Detection Method of Redundant IMU Using Modified Principal Component Analysis

  • Lee, Won-Hee;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.398-404
    • /
    • 2012
  • A fault detection process is necessary for high integrity systems like satellites, missiles and aircrafts. Especially, the satellite has to be expected to detect faults autonomously because it cannot be fixed by an expert in the space. Faults can cause critical errors to the entire system and the satellite does not have sufficient computation power to operate a large scale fault management system. Thus, a fault detection method, which has less computational burden, is required. In this paper, we proposed a modified PCA (Principal Component Analysis) as a powerful fault detection method of redundant IMU (Inertial Measurement Unit). The proposed method combines PCA with the parity space approach and it is much more efficient than the others. The proposed fault detection algorithm, modified PCA, is shown to outperform fault detection through a simulation example.

A Hilbert-Huang Transform Approach Combined with PCA for Predicting a Time Series

  • Park, Min-Jeong
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.995-1006
    • /
    • 2011
  • A time series can be decomposed into simple components with a multiscale method. Empirical mode decomposition(EMD) is a recently invented multiscale method in Huang et al. (1998). It is natural to apply a classical prediction method such a vector autoregressive(AR) model to the obtained simple components instead of the original time series; in addition, a prediction procedure combining a classical prediction model to EMD and Hilbert spectrum is proposed in Kim et al. (2008). In this paper, we suggest to adopt principal component analysis(PCA) to the prediction procedure that enables the efficient selection of input variables among obtained components by EMD. We discuss the utility of adopting PCA in the prediction procedure based on EMD and Hilbert spectrum and analyze the daily worm account data by the proposed PCA adopted prediction method.

Face recognition by PLS

  • Baek, Jang-Sun
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 2003
  • The paper considers partial least squares (PLS) as a new dimension reduction technique for the feature vector to overcome the small sample size problem in face recognition. Principal component analysis (PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases show that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

  • PDF

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

주성분 분석을 이용한 기울어진 얼굴에서의 눈동자 검출 (Eye detection on Rotated face using Principal Component Analysis)

  • 최연석;문원호;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.61-64
    • /
    • 2011
  • 컴퓨터 비전을 이용한 눈동자 추적 기술은 Human-Computer Interface(HCI)의 중요성이 높아짐에 따라 많이 연구되고 있다. 본 논문에서는 HCI 장치를 위한 눈동자 검출 방법을 제안한다. 제안하는 방법은 기울어진 얼굴에서도 눈동자를 검출하기 위해 Principal Component Analysis(PCA) 방법을 이용하여 얼굴의 기울어진 정도를 검출하고 기울어진 정도를 이용하여 눈동자 영역의 위치를 계산한다. 최종적으로 눈 위치의 검출을 위해 눈동자 영역의 밝기 정보를 사용한다. FERET DB의 얼굴영상을 사용하여 실험한 결과, 기울어진 얼굴에서도 눈동자를 효과적으로 검출 할 수 있음을 확인하였다.

  • PDF

농촌지역 토지이용계획 기법 연구(I) -주성분 분석법에 의한 지역 구분- (A Study on Rural Land Use Planning Technique ( I ) Sub-regional Analysis by Principal Component Analysis -)

  • 정하우;박병태
    • 농촌계획
    • /
    • 제1권2호
    • /
    • pp.33-42
    • /
    • 1995
  • For formulation of the rational land us2 plan in regional base, it is a basic and prior condition to categorize total planning area into some functional subregions by purposely-selected indicators. As one of quantitive approaches to the areal categorization in rural area, Principal Component Analysis(PCA) was introduced and testified its applicability through a case study on Sunheungdistrict(called as myun in Korea) area, Youngpoong-county, Kyungbuk-province, Korea. Areal analysis by PCA was carried out on rurality and urbanity of parish-level area(ri in Korea) respectively. By use of PCA analysis results, classifying matrix was made through categorization of both index scores. Among 18 ri's of the case study area, 12 was classified as rural-dominated areas, 2 as urban- dominated areas, and reamaining 3 as intermediate areas.

  • PDF

Water quality observation using Principal Component Analysis

  • Jeong, Jong-Chul;Yoo, Sing-Jae
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.58-63
    • /
    • 1998
  • The aim of the present study is to define and tentatively to interpret the distribution of polluted water released from Lake Sihwa into Yellow Sea using Landsat TM. Since the region is an extreme case 2 water, empirical algorithms for chlorophyll-a and suspended sediments have limitations. This work focuses on the use of multi-temporal Landsat TM. We applied PCA to detect evolution of spatial feature of polluted water after release from the lake. The PCA results were compared with in situ data, such as chlorophyll-a, suspended sediments, Secchi disk depth (SDD), surface temperature, radiance reflectance at six bands. The in situ remote sensing reflectance was analysed with PCA. On the basis of these In situ data we found good correlation between first Principal Component and Secchi disk depth ($R^2$=0.7631), although other variables did not result in such a good correlation. The problems in applying PCA techniques to multi-spectral remote sensed data are also discussed.

  • PDF

독립성분해석을 이용한 영상분리에 있어서의 잡음 허용에 관한 주성분해석과의 비교 (A noise tolerance of Independent Component analysis in image classification in comparision with Principal Component Analysis)

  • 홍준식;유정웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2810-2812
    • /
    • 2001
  • 본 논문에서는 독립성분해석을 이용한 영상분리에 있어서의 잡음에 대한 강인성에 대한 주성분해석과 비교 연구를 함으로써, 독립성분해석(Independent Component Analysis, ICA)기법의 효율성을 고찰하고 분석하고자 한다. 원래의 인식 시스템 모델에 잡음을 주었을 때, ICA를 이용한 영상 분리의 잡음에 대한 강인성은 주성분 해석(Principal Component Analysis, PCA)기법에서 보다 더 잡음에 강인한 성질을 내포하고 있는데, 이는 PCA 보다 ICA가 분리하려는 영상정보의 상호관계를 더 약화시키는 작용을 하기 때문이다. 이러한 특성은 모의실험을 통해 확인되었다.

  • PDF

주성분분석과 독립성분분석에서의 제안된 GBD 알고리즘을 이용한 영상분류 방법 (Image Classification Method Using Proposed Grey Block Distance Algorithm for Independent Component Analysis and Principal Component Analysis)

  • 홍준식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.809-812
    • /
    • 2004
  • 본 논문에서는 다중해상도에서 기존의 그레이 블록 거리(grey block distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 예로서 주성분분석(principal component analysis; 이하 PCA)기법과 독립성분분석(independent component analysis; 이하 ICA)기법을 적용하여 유용성과 제안된 방법이 이전의 연구보다 k가 감소할 때 편차는 줄어들어 좋은 영상 분류 특징을 보였으며, ICA가 PCA에 비하여 영상간의 상대적 식별을 용이하게 하여 빨리 수렴이 되는 것을 모의 실험을 통하여 확인하였다.

  • PDF

주성분 분석과 동적 분류체계를 사용한 자동 이메일 분류 (Automatic e-mail classification using Dynamic Category Hierarchy and Principal Component Analysis)

  • 박선;김철원;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.576-579
    • /
    • 2009
  • 인터넷 사용의 보편화로 이메일의 양이 급속히 증가하고 있다. 따라서 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 주성분 분석(PCA, Principal Component Analysis)을 기반으로 한 자동 카테고리 생성 방법과 동적 분류 체계 방법을 결합한 새로운 자동 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.

  • PDF