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Abstract

In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA
(principal component analysis) and SPRT (sequential probability ratio test) methods is developed
to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique
is applied to remove noise components in input signals into the neuro-fuzzy system. The PCA is
used to reduce the dimension of an input space without losing a significant amount of
information. The PCA makes easy the selection of the input signals into the neuro-fuzzy
system. Also, a lower dimensional input space usually reduces the time necessary to train a
neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the
relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The
residuals between the estimated signals and the measured signals are used to detect whether the
sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed
sensor-monitoring algorithm was verified through applications to the pressurizer water level and

the hot-leg flowrate sensors in pressurized water reactors.

Key Words : neuro-fuzzy inference system, principal component analysis, sequential
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1. Introduction

mathernatical modeling and computer coding of a

In nuclear power plants, measurement outputs
from many different channels are used in control
and safety critical systems and for plant state
identification. Therefore, these outputs must be
validated to increase the reliability of operator
decisions and automatic plant operations. Sensor

validation can be done through accurate

483

process which are usually very difficult. Also,
traditional methods for sensor validation can
involve periodic instrument calibrations. These
calibrations are expensive in labor and process
downtime. Many periodic sensor calibration
methods require the process to be shut down, the
instrument taken out of service, and the

instrument loaded and calibrated. These methods
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can induce equipment failure and incorrect
calibrations due to adjustments made under
nonservice conditions. Recently, the neural
networks have been used for this sensor
monitoring as a powerful tool [1-5]. Through
training, the neural network is very good at
phenomenal nonlinear function approximation
and pattern recognition, especially when expert
diagnostic knowledge and the prior relation of
fault symptom model are not clear. The direct use
of transient signals in the time domain to the input
of a neuro-fuzzy inference system can be difficult
since the subtle differences may occur between
different transients. Therefore, it is necessary to
preprocess the transient signals.

A wavelet denoising technique is applied to
remove noise components in the input signals on
the neuro-fuzzy inference system. Wavelets have
the ability to analyze a localized area of a larger
signal. Wavelet analysis is capable of revealing
aspects of data that other signal analysis
techniques can miss, aspects like trends,
breakdown points, discontinuities in higher
derivatives, and self-similarity [6]. The dimension
of the input signals to a neuro-fuzzy inference
system had better be reduced to save the time
necessary to train the neuro-fuzzy inference
system. Principal component analysis (PCA) [7-8]
is used to reduce the dimension of an input space
without losing a significant amount of information.
This method transforms the input space into an
orthogonal space. Also, the PCA method makes
easy the selection of the input to the neuro-fuzzy
inference system.

By using the input signals preprocessed by the
wavelet denoising technique and the principal
component analysis, a neuro-fuzzy inference
system estimates the relevant signals. The neuro-
fuzzy system parameters such as the membership
functions and the connectives between layers in a

neuro-fuzzy inference system will be optimized by

a genetic algorithm and a least-squares algorithm.

An important problem in sensor monitoring is
whether a sensor is decided to be failed or not
after only one abnormal observation. It is sure that
several measurements can give a reliable result. At
every new sample, a new mean and a new
variance may be computed and then, these
quantities may be used to check if the sensor is
failed or not. However, this procedure requires too
many samples to obtain a meaningful mean and a
meaningful variance and also, during the
acquisition of the samples, a significant
degradation of the process monitored may occur.
Therefore, in this work the sequential probability
ratio test (SPRT) [9] was used. The method can
detect a failure using the degree of degradation
and the continuous behavior of the sensor, without
having to calculate a new mean and a new
variance at each sample. The signal estimated by
the neuro-fuzzy inference system is compared with
the measured signal, and then the SPRT monitors
the sensor using the residuals.

The proposed algorithm was applied to the
sensor monitoring of the pressurizer water level
and the hot-leg flowrate of pressurized water
reactors [10}].

2. Preprocessing of Sensor Signals
2.1. Wavelet Denoising

The denoising objective is to suppress the noise
part of a noisy signal and to recover a denoised
signal. Fourier analysis consists of breaking up a
signal into sine waves of various frequencies.
Similarly, wavelet analysis consists of breaking up
a signal into shifted and scaled versions of the
original wavelet called mother wavelet. Let a signal
f(t) be expressed as

f@® =2 c,o (1) forany f()eV,, (1)
k
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where V, is the subspace of L¥R) (the space of all
functions with a well defined integral of the square
of the modulus of the function) spanned by the
scaling functions @(t) with all integers k from
minus infinity to infinity. The size of the subspace
can generally be increased by changing the time
scale of the scaling functions that is generated
from the basic scaling function by scaling and
translation expressed as @,{t) = 2% @(2't-k)[11].
By introducing a slightly different set of the
wavelet functions y(t) that span the differences
between the spaces spanned by the various scales
of the scaling function @;(t), the important
v features of a signal can be better described. If f(t)
€V, can be expressed at a scale of j+1, when it
is expressed at one scale lower resolution,
wavelets are necessary for the detail not available
at a scale of j as follows:

f@= zajn (k)@ 14 () =Zaj (K@, ()
P k

(2)
+3.d, (), (D).
k
Since @,«(t) and ,4(t) are orthonormal,
a, (k)= 3 10m - 2K)a ., (m) a
d,(k) = 3 hm~2k)a 1 (m) . @

The filtering of the input signal is thought as a
moving average with the coefficients being the
weights like Egs. (3) and (4). Wavelet decomposition
is to obtain low pass approximations and high pass
details. An approximation is a low-resclution
representation of the original signal, while a detail is
the difference between two successive low-
resolution representations of the original signal [12].
Thus, an approximation contains the general trend
of the original signal, while a detail contains the
high frequency contents of the original signal.
Approximation and details are obtained through a

high pass filter
[ Details
~500 DWT
coefficients
Original signal
1000 data points
{ low pass filter Approximations
~500 DWT
coefficients

Fig. 1. Filtering and Downsampling

successive convolution process. The detail and
approximation of the original signal are obtained
by passing it through a filter bank [11] which
consists of low and high pass filters and by
downsampling it. Downsampling means throwing
away every second data point. This concept is
described in Fig. 1.

2.2. Principal Component Analysis (PCA)

The PCA method involves linearly transforming
the input space into an orfhogonal space that can
be chosen to be of lower dimension with minimal
loss of information and is used to reduce the
dimension of an input space into the neuro-fuzzy
inference system. A lower dimensional input space
will reduce the time necessary to train a neuro-
fuzzy inference system. The PCA method can be
chosen as a method of preprocessing data to
extract uncorrelated features from the data. The
method also makes the transformed vectors
orthogonal and uncorrelated.

Given a signal vector x of p dimensions, x = [x;
Xz +++ X, its true mean and covariance matrix are
replaced with the sample mean m and the sample
covariance matrix 8§ because they are seldom

known. The eigenvalues A, Az, ::+, A,, and the
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corresponding orthonormal eigenvectors pi, pa,
-+, p, of the covariance matrix S are calculated,
and then arranged according to their magnitude:

MZhe =2 )
The eigenvectors p1, pz, -, p, are called the
principal components. The eigenvalues are
proportional to the amount of variance
(information) represented by the corresponding

principal component. The transformation to the
principal component space can be written as:

z=xP 6)

where P = [p;, p2, -+, P

The feature vector z can be transformed back into
the original data vector x without a loss of
information as long as the number of features, m,
is equal to the dimension of the original space, p.
For m<p, some information is usually lost. The
objective is to choose a small m that does not lose
much information. Usually there is variability in
the data with random noise, this variability is in
most cases of no concern, and by transforming to
a lower dimensional space this noise can

sometimes be removed.

3. Neuro-fuzzy Inference System for
Sensor Signal Estimation

3.1. Fuzzy Inference System

A system that consists of a fuzzy inference
system and its neuronal training system is usually
called a neuro-fuzzy inference system or an
adaptive fuzzy system. In a fuzzy inference system,
the i-th rule can be described using the first-order
Sugeno-Takagi type {13] as follows:

If x, is Ay AND --- AND x,, is 4,,, then y,

is A, then y, is fi(x, -+, X)),

where
X1, **, Xn = input variables to the neuro-fuzzy
inference system (m = number of
input variables),
An, -+, Am = antecedent membership function

of each input variable for the i-th
rue(i=1,2, ..., n),
v = output of the i-th rule,

S xm) = Dy, + i, (®)
J=1

qy = weighting value of the j-th input onto the
i-th rule output,
r; = bias of the j-th output,
n = number of rules.
In this work, the following Gaussian and sigmoid
membership functions are used for each input
variable:

(x;—c; 2
A, = v
y (%)) exl{ 25 ]' {9)

1
exp[— %S J+l ’ (10)

i

Ay(x)) =

where
¢y = center position of a membership function
for the i-th rule and the j-th input,
s; = sharpness of a membership function for
the i-th rule and the j-th input.

The sigmoid membership function is used for
the maximum and minimum center values in each
input variable and the Gaussian membership
function is used for other center values. The
output of an arbitrary i-th rule, f,, consists of the
first-order polynomial of inputs as given in Eq. (8).
The output of a fuzzy inference system with rules
is obtained by weighting the real values of
consequent part for all rules with the
corresponding membership grade. The output is
obtained as follows:
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where

w,=[14,G). (13)
j=1

3.2. Training of the Fuzzy Inference System

The neuro-fuzzy inference system is optimized by
adapting the antecedent parameters (membership
function parameters) and consequent parameters
{the polynomial coefficients of the consequent part)
so that a specified objective function is minimized.
The adaptation methods of most fuzzy inference
systems rely on the back-propagation algorithm
[14]. The back-propagation algorithm is a general
method for recursively solving for parameter
optimization. Since this conventional optimization
algorithm is susceptible to getting stuck at local
optima, the genetic algorithm is used in this work.
However, the genetic algorithm requires much
time if there are many parameters to be
optimized. Therefore, the least-squares method
that is a one-pass optimization method is
combined for a part of the parameters. The
genetic algorithm is used to optimize the
antecedent parameters ¢; and s, and the least-
squares algorithm is used to solve the consequent
parameters g, and r, [15].

To use a genetic algorithm, a solution to a given
problem must be represented as a chromosome
which can be thought of as a point in the search
space of candidate solutions. Since the genetic
algorithm, in this work, optimizes the antecedent
parameters, each chromosome contains the
antecedent parameters ¢; and s, which describe

the fuzzy membership functions. The genetic
algorithm then creates a population of solutions
{chromosomes) and applies genetic operators such
as selection, crossover and mutation to evolve the
solutions in order to find the best one. The genetic
algorithms require a fitness function that assigns a
score to each chromosome in the current
population. The fitness of a chromosome
{individual) depends on how well that chromosome
solves the problem at hand [16-17]. In this work, a
fitness function that evaluates the extent to which
each individual is suitable for the given objectives
such as small maximum error together with small

total squared error, was suggested as follows:
F=exp(- B, - pEy), (14)

where L; and p, are the weighting coefficients,
and E; and E, are overall sum of squared errors
and maximum absolute error defined as

N

E =Y (vat)-y0)) (15)
k=1

£, =max{|y, (b) - y(h)} - 16)

yak) and y(k) denote the measured signal and the
estimated signal, respectively.

If we fix some parameters of the fuzzy inference
system by the genetic algorithm, the resulting
fuzzy inference system is equivalent to a series
expansion of some basis functions. This basis
function expansion is linear in its adjustable
parameters. Therefore, we can use the least-
squares method to determine the remaining
parameters. When a total of N input-output
pattern data for training are given, from Eq. (11)
the consequent parameters are chosen such that
the pattern data satisfy the following equation:

y=Wgq, 17)
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where vy is the output data, q is the parameter
vector, and the matrix includes the input data
defined as, respectively

y=[y‘ yhee y”]r,

k=12,---,N.

The neuro-fuzzy inference outputs are represented
by the Nx{m+1)n -dimensional matrix W and
{m+1)n-dimensional parameter vector q. In order
to solve the parameter vector q in Eq. (17), the
matrix W should be invertible but is not usually a
square matrix. Therefore, we solve the vector

using the pseudo-inverse as follows:
q=(W'w)'wry. (18)

The least-squares method is a one-pass regression
procedure and is therefore much faster than the
back-propagation algorithm and the genetic
algorithm.

4. Failure Detection Using SPRT

In sensor monitoring, at every new sample, a
new mean and a new variance may be computed
to check if the sensor is degraded or not.
However, this procedure requires too many
samples to obtain a meaningful mean and a
meaningful variance. During the acquisition of the
samples, a significant degradation of the process
monitored may occur. So a method is required to
detect a failure using the degree of failure and the
continuous behavior of the sensor, without having
to calculate a new mean and a new variance at

—®—P(e,.m,a)
~—P(e,m,0)
—O0— P,(r:

0.4

2 My 9,)

0.3

0.2+

0.1

probability density function

0.0 2 =

Fig. 2. Probability Density Functions of Residual
Signals

each sample. The SPRT (Sequential Probability
Ratio Test) which is a statistical model developed
by Wald in 1945 [9] satisfies these requirements.
The objective of sensor degradation detection is to
detect the failure as soon as possible with a very
small probability of making a wrong decision. In
the application of sensor failure detection, the
SPRT is dealing with the residual (difference
between the sensor measurement and the sensor
estimate). Normally the residual signals are
randomly distributed, so they are nearly
uncorrelated and have a Gaussian {normal)
distribution P(g,,m,;,0), where g is the residual
signal at time k, and m, and o, are the mean and
the standard deviation under hypothesis i,
respectively {refer to Fig. 2). The sensor failure can
be stated in terms of a change in the mean m or a
change in the variance 6°. The basis for the SPRT
lies in the likelihood ratio, which is given by

_ Ple | Hy)

- » ].
Po(ex | Hy) (19

k
where H, represents a hypothesis that the sensor
is degraded and H, represents a hypothesis that
the sensor is normal. The ratio is updated at every
sampling step. If a set of samples x,, i=1,2, ---, n,
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Fig. 3. Trajectories of LLR' s

is collected with a density function P describing
each sample in the set, an overall likelihood ratio
is given by

- Pi(e | H)) (& Hy) Piles | Hy) - Bileq | HY)
! Py(e) | Hy) Po(& 1 Ho) - Pol(es | Hy) -~ Fyle, | Hy)

(20)

By taking the logarithm of the foregoing equation
and replacing the probability density functions in
terms of residuals, means and variances, the log
likelihood ratio (LLR, A,) can be written as

following recurrent form:

2 2
A=Ay +ln(-d—°]+ (& —mo)” _ (6 =m)” (21)

2 2
o 20 20’1

This is the form we use for deriving the sensor
drift detection algorithm.

For a normal sensor, the likelihood ratio would
decrease and eventually reach a specified bound
A, a smaller value than zero. When the ratio
reaches this bound, the decision is made that the
sensor is normal, and the ratio is initialized by setting
it equal to zero. For a degraded sensor the ratio
would increase and eventually reach a specified
bound B, a larger value than zero. When the ratio is
equal to B, the decision is made that the sensor is
degraded. Figure 3 shows these processes. The
decision boundaries A and B are chosen by a false
alarm probability o and a missed

Sensor

l Genetic and
Signals Peincipal
—»]

" Least-Squares
Denoised T, Algorithms
Output
Failure
Wavelet Component Fuzzy Inference] » serT
D Analysis Feature System Estimated Detection
Ci

Signals

A,

A4

Fig. 4. Schematic Diagram of the Proposed
Sensor-monitoring Algorithm

alarm probability 8; 4= ln(1 B aj and B= 1n[];ﬂ.)

a

5. Applications

The proposed algorithm that the above-
mentioned methods are combined is described in
Fig. 4. The proposed algorithm was applied to the
pressurizer water level and the hot-leg flowrate
sensors. The input-output data were obtained for
the load-decrease transients from the simulation of
the MARS code [18] which is a unified version of
COBRA/TF and RELLAP5/MOD3. The four
important control algorithms were written into the
input of the MARS code; the steam generator
level, control rod, steam dump and pressurizer
pressure (heater and spray) controls. The input-
output data consist of a total of 14 different
signals. Noise is added to model the real data of
the nuclear power plant. The noise is proportional
to the maximum variation G of each signal and
is chosen from a uniform distribution on the
interval (- 0.026m, 0.026:). In all computer
simulations, the wavelet denoising technique was
applied to all measurement signals and the
Daubechies wavelet function was used {19].
Figures 5 through 7 show the measured and
denoised signals of the pressurizer water level, hot-
leg flowrate, coolant average temperature, hot-leg
temperature, cold-leg temperature, pressurizer

pressure, and pressurizer temperature that were
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Fig. 5. Wavelet Denoising of the Pressurizer
Water Level and Hot-leg Flowrate
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Fig. 6. Wavelet Denoising of the Coolant Average,
Hot-leg, and Cold-leg Temperatures

used in this work and partially selected from a total
of 14 different measured signals. Each signal
consists of a total of 700 discrete time points
where its sampling period is 1 sec. The neuro-
fuzzy inference system was trained using one fifth
of all the given data in the training stage and was
verified using the remaining data in the verification
stage. The false alarm probability o and the
missed alarm probability B are chosen as 0.0001
and 0.1, respectively.

2270 654

2260

2
w 653

3 &
—_— ]
e E
5 2250 ¢ 2
2 8
§ £
N 652 ©
4 o =
Q2240 4 -

—i— measured PRZ pres. —&— measured PRZ temp.
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2230 - 651
0 100 200 a00 400 500 600 700

time [sec]

Fig. 7. Wavelet Denoising of the Pressurizer
Pressure and Temperature

5.1. Pressurizer Water Level

In case that the principal component analysis is
applied to the pressurizer water level monitoring,
the input signals into the PCA are the coolant
average temperature, hot-leg flowrate, and
pressurizer temperature and pressure. We want to
use a small number of inputs, if possible, because
there is a smaller possibility that it is related with
faulty and unreliable sensor signals. They are
chosen through correlation analysis and several
computer simulations among the signals that are
considered to have a little close relationship with
the pressurizer water level. The input signals into
the neuro-fuzzy inference system are a total of four
signals: the first, the delayed first, the second and
the third feature components. The first and second
feature components have almost all information
for the input signals into the PCA (refer to Table
1). In case that the principal component analysis is
not applied, the input signals into the neuro-fuzzy
inference system are a total of four signals: the
coolant average temperature, the delayed coolant
average temperature, the pressurizer temperature
and pressure. The coolant average temperature is
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Table 1. Relative Information of Each Feature Component

Feature component Pressurizer water level Hot-leg flowrate
1 65.9654 64.3666
2m 31.3311 35.1428
3¢ 2.7035 0.4894
4" 0.0000 0.0012

50

—8&— measured {denoised)
-—8— estimated

48

46

water levei (%]

44

42 T T T T T T
0 100 200 300 400 500 600 700

time [sec]

Fig. 8. Estimation of the Pressurizer Water Level
(using the verification data that were not
used in the training stage)

very closely related with the pressurizer water level
(refer to Table 2). Irrespective of the PCA
application, note that the same four input signals
into the neuro-fuzzy inference system are used to
compare their error levels between cases with
PCA application and without PCA application.
There are not clear differences in maximum
relative errors and standard deviations of the
training data and the verification data but the large
difference of the total squared error between the
training data and the verification data in Table 3 is
due to the fact that the number of the verification
data is four times more than that of the training
data. Consequently, the difference of the results
between the verification data and the training data
is very small.

Table 3.a shows total squared relative percent

50

—&— measured (denoised)
—e— estimated

48

g
H
H 46
8
@
3

44 -

42 T T T T T T

o 100 200 300 400 500 600 700

time {sec}

Fig. 9. Failure Detection of the Pressurizer Water
Level Sensor (with uniform noise)

error, maximum relative. percent error, and the
standard deviation of residuals in case the PCA
method is applied or not. The result with PCA
application is about three times better than that
without PCA application. As shown in Fig. 8,
through the verification simulation using the
verification data that were not used in the training
stage, it is known that the proposed algorithm
actually estimates the pressurizer water level using
other signals. Also, Table 3.b shows the results in
case that Gaussian noise with mean zero and
standard deviation 0.020... is added. In this case,
also, the result with PCA application is better than
that without PCA application.

The pressurizer water level signal was purposely
degraded in a degree of 3.0 x 10® of the measured
values each time step from to verify the failure
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Table 2. Correlation Coefficient Matrix for Gathered Signals

S | FF | sp | sT | N | w.|wHT |cT | HE| AT | PP | PL| RP| PT
;‘e:,:te(sﬂ 1.0000 | 0.9897 |-0.9566 |-0.9573]-0.0031 | 0.0039] 0.9851 10.4858 | 0.3202 | 0.9541 |-0.1417| 0.9544 | 0.9946 | -0.1441
o}

;e:jmte(m 0.9897 | 1.0000 |-0.9353 |-0.9362|-0.0919 -0.0916| 0.9843 |-0.4388 | 0.3475| 0.9605 |-0.0896 | 0.9599 | 0.9877 |-0.0920
::;"(‘SP) 10.9566-0.9353{ 1.0000 | 0.9999 |-0.02601 -0.0252-0.9078|0.7168 | 0.0436|-0.8368] 0.2918 |-0.8317|-0.9564] 0.2942
::::‘(SD -0.9573|-0.9362|0.9999 | 1.0000 |-0.0263 -0.0254-0.9085 [0.7152 | 0.0476 |-0.8377| 0.2932 |-0.8328|-0.9568] 0.2956
S/G water
ey |0.0031|-0.0919|-0.02601.0.0263 1.0000 | 0.9985.0.0368 0.1170 | 0.0570 | 0.0560|-0.2076 |-0.0485|-0.0207| -0.2076
:’j&’iﬁ;m"e 10.0039|-0.0916{-0.02521-0.0254] 0.9985 | 1.0000|-0.03720.1153 | 0.0565 | -0.0562|-0.2065|-0.0496| -0.0212| -0.2065
:‘e‘:;ﬁm 0.9851 | 0.9843-0.9078 |-0.9085-0.0368 -0.0372| 1.0000 |-0.3655 | 0.4000 | 0.9891 | 0.0180 | 0.9852 | 0.9904 | 0.0156
f::;e(gn 10.4858-0.4388|0.7168 | 0.7152 |-0.1170] -0.1153]-0.3655 | 1.0000 | 0.6178-0.2247| 05781 |-0.2110| -0.4899] 0.5796
hot-leg -0.3202|-0.3475] 0.0436 [ 0.0476 | 0.0570 | 0.0565|-0.4000 [0.6178 | 1.0000|-0.5152|-0.2655 |-0.5446| -0.2837| -0.2644
flowrate(HF)
anspxe{)age 0.9541 | 0.9605 |-0.83681-0.8377|-0.0560 -0.0562{ 0.9891 [0.2247 |-0.5152| 1.0000| 0.1131 | 0.9978 | 0.9593| 0.1109
PRZR

10.1417|-0.0896]0.2918 | 0.2932 |-0.2076 | -0.2065| 0.0180 |0.5781 | 0.2655 | 0.1131 | 1.0000 | 0.0727 | -0.0727| 0.9999
pressure(PP)
PRZR water
vl 0.9544 | 0.9599 |-0.8317 |-0.8328|-0.0495 | -0.0496] 0.9852 |0.2110 | 0.5446 | 0.9978 | 0.0727 | 1.0000| 0.9540| 0.0705
Vi
;e:;:'mp) 0.9946 | 0.9877 |-0.9564 |-0.9568|-0.0207 | -0.0212| 0.9904 |-0.4899 | -0.2837] 0.9593|-0.0727| 0.9540 | 1.0000|-0.0751
PRZR '
o ) |[0-1441:00920(0.2942 |0:2956 | 0.2076 | 0.2065) 00156 |0.5796 | 0.2644] 0.1109| 09999 | 00705 |-0.0751 1.0000

detection algorithm. The failure detection algorithm
detected its gradual degradation 84 sec after the
beginning of the gradual degradation in case the
PCA is applied (refer to Fig. 9). The trip flag ‘1’
in Fig. 9 represents that the sensor is determined
to be failed. In case the PCA was not applied, the
sensor was determined to be failed 206 sec after

the beginning of the gradual degradation (refer to
Fig. 9). Therefore, the failure detection algorithm
with PCA application detected the gradual
degradation 122 sec faster than the failure
detection algorithm without PCA application. This
is because that the standard deviation of the

estimation errors is used to determine whether it is
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Table 3. Total Squared Relative Error, Maximum Relative Error, and Standard Deviation of

Residuals (after 100 generations training)

{a) uniform noise

PCA application

Pressurizer water level

Hot-leg flowrate

Yes No Yes No
Total squared
) 2.0578e-001 | 1.4529e+000 | 4.0909e-003 | 7.3373e-003
relative error (%]
Training Maximum
) 8.4232e-002 | 2.4787e-001 | 1.1987e-002 | 1.5024e-002
data relative error (%]
standard deviation
) 1.7915e-002 | 4.7736e-002 | 5.0725e-001 | 6.7942¢-001
of residuals
Total squared
) 8.4174e-001 {5.7896e+000 | 1.6224e-002 | 2.8884e-002
relative error (%]
Verification Maximum 8.6148e-002 | 2.4990e-001 | 1.2007e-002 |1.4981e-002
data relative error [%]
standard deviation | ) o1 560002 | 4.7697¢-002 | 5.0553¢-001 |6.7457¢-001
of residuals

(b) Gaussian noise

PCA application

Pressurizer water level

Hot-leg flowrate

Yes No Yes No
Total squared
) 4.0053e-001 | 1.2081e+000 | 3.7736e-003 | 1.4514e-002
relative error [%)] )
Training Maximum
. 1.0789¢-001 | 2.1306e-001 | 1.2475e-002 |2.4139e-002
data relative error [%)
tandard deviati
slandard deviation | 5 4929¢-002 | 4.3333-002 | 4.8734e-001 | 9.5576e-001
of residuals
Total squared 1 1 o1 01000 | 4.7116e+000 | 1.4982¢-002 |5.7579¢-002
relative error [%)
Verification Maximum relative
1.1317e-001 | 2.1298e-001 | 1.3436e-002 | 2.5134e-002
data error [%)]
standard deviation |, | (o 002 | 4.2868¢-002 | 4.8596¢-001 | 9.5267-001
of residuals

failed or not. In order to check the bias {mean

value) degradation in Eq. (21}, the equation can be

converted into the following equation by

substituting ¢, =

oo and Lo = 0 since normal

residual signals have zero mean values:

m
l" = A"_l +_—2 [E" -
Gy

m
L
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Fig. 10. Failure Detection of the Pressurizer
Water Level Sensor (with Gaussian noise)

As shown in Table 3, the standard deviation with
PCA application is smaller than that without PCA
application. Therefore, as known in the above
equation, its log likelihood ratio {LLR) increases
faster and reaches the specific bound B faster
(refer to Fig. 3), which makes the detection time
short.

Also, in case that Gaussian noise is added, the
failure detection algorithm with PCA application
detected the gradual degradation 89 sec faster
than the failure detection algorithm without PCA
application (refer to Fig. 10).

5.2. Hot-Leg Flowrate

In case that the principal component analysis is
applied to this hot-leg flowrate monitoring, the
input signals into the PCA are the hot-leg and
cold-leg temperatures, and pressurizer water level
and pressure. They are chosen through several
computer simulations among the signals that are
considered to have a little close relationship with
the hot-leg flowrate (correlation analysis). The
input signals into the neuro-fuzzy inference system
are a total of four signals: the first, the delayed
first, the second and the third feature components

9410
5400
8 9390
£
8
= 9380 4
-]
g
3
& 9370
9360 "
—&— measured (denoised)
—&— estimated
9350 T T T T T T
0 100 200 300 400 500 600 700

time [sec)

Fig. 11. Estimation of the Hot-leg Flowrate (using
the verification data that were not used
in the training stage)

that are the same ones used in the pressurizer
water level application. In case that the principal
component analysis is not applied, the input
signals into the neuro-fuzzy inference system are
the hot-leg temperature, the delayed hot-leg
temperature, the pressurizer water level and the
cold-leg temperature. The first two feature
components have almost all information for the
input signals into the PCA (refer to Table 1).

As shown in Table 3.a, better results are
obtained when the PCA is applied. The
application of the PCA provides better
performance as well as the easy selection of the
input signals. The proposed algorithm estimates
well the hot-leg flowrate using other signals as
shown in Fig. 11. Comparing with the relative
errors of the pressurizer water level and the hot-
leg flowrate cases, it is shown that the relative
errors of the pressurizer water level is much larger
that those of the hot-leg flowrate. However, this is
because the magnitude of the hot-leg flowrate is
much greater that that of the pressurizer water
level and also the hot-leg flowrate change is
relatively much smaller than the pressurizer water
level change. Also, Table 3.b shows the results in

case that Gaussian noise with mean zero and
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Fig. 12. Failure Detection of the Hot-leg Flowrate
Sensor (with uniform noise)

standard deviation 0.02G,,.. is added. In this case,
also, the result with PCA application is better than
that without PCA application.

The hot-leg flowrate signal was on purpose
degraded in a degree of 5.0x 10 of the
measured values each time step from 200 sec to
verify the failure detection algorithm. The failure
detection algorithm detected its gradual
degradation 166 sec after the beginning of the
gradual degradation in case the PCA is applied
(refer to Fig. 12). In case the PCA was not
applied, the sensor was determined to be failed
223 sec after the beginning of the gradual
degradation (refer to Fig. 12). Therefore, the
failure detection algorithm with PCA application
detected the gradual degradation 57 sec faster
than the failure detection algorithm without PCA
application. Also, in case that Gaussian noise is
added, the failure detection algorithm with PCA
application detected the gradual degradation 158
sec faster than the failure detection algorithm
without PCA application (refer to Fig. 13).

6. Conclusions

In this work, a neuro-fuzzy inference system was

9450

[—O—O—O-‘

9426 - —®— measured (dencised)
—e— estimated (with PCA)
—&— estimated {without PCA}

fO—e0—O0—<C—04
9375 4 V
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£ 9400 4 Z
2 =™
© =
©
H
)
=
0
—O— trip flag (with PCA}
—O- trip flag (without PCA)
9350 . r .
0 100 200 300 400 500 600 700

time [sec]

Fig. 13. Failure Detection of the Hot-leg Flowrate
Sensor (with Gaussian noise)

proposed to estimate the relevant signals using
other signals that are selected through several
computer simulations among the collected signals
considered to have a little close relationship with
the output signal by simple correlation analysis.
The input signals into the neuro-fuzzy inference
system are preprocessed by the wavelet denoising
method and principal component analysis. The
input signals into the neuro-fuzzy inference system
can easily be selected by the PCA. The first three
feature components are ljsed as its input signals
and also the delayed first feature component is
used to describe the sequential signal. The
application of the PCA provides better
performance (smaller estimation error) as well as
the easy selection of the input signals. The effect of
the PCA was larger according as the noise level
increased, although it is needless to say the wavelet
denoising effect. Also, it is easier to select the input
signals to the neuro-fuzzy inference system by the
PCA and the failure detection algorithm with PCA
application detects the gradual degradation failure
faster than the failure detection algorithm without
PCA application since the standard deviation of
estimation errors with PCA application is smaller
than that without PCA application.
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