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Abstract

A time series can be decomposed into simple components with a multiscale method. Empirical mode de-

composition(EMD) is a recently invented multiscale method in Huang et al. (1998). It is natural to apply

a classical prediction method such a vector autoregressive(AR) model to the obtained simple components

instead of the original time series; in addition, a prediction procedure combining a classical prediction model

to EMD and Hilbert spectrum is proposed in Kim et al. (2008). In this paper, we suggest to adopt principal

component analysis(PCA) to the prediction procedure that enables the efficient selection of input variables

among obtained components by EMD. We discuss the utility of adopting PCA in the prediction procedure

based on EMD and Hilbert spectrum and analyze the daily worm account data by the proposed PCA adopted

prediction method.

Keywords: Multiscale method, empirical mode decomposition, Hilbert spectrum, Hilbert-Huang trans-

form, principal component analysis, vector AR model.

1. Introduction

Prediction has always been an object of attention in statistics. In a classical time series analysis

for predicting, a model for given data is first constructed in the time domain and then the future

values are forecasted; however, most models are built under certain assumptions. As a typical

example, we can consider the autoregressive(AR) model that is steadily used for analyzing a time

series; however, the stationarity assumption is required. In order to alleviate such assumptions for

data, we can take two different approaches. One is to construct general models having less strict

assumptions, for example autoregressive integrated moving average(ARIMA) model and the other

one is to decompose the data into simple components. The method that we deal with in this paper

is related to simple components.

Decomposing a time series into several components can be performed by Fourier transform in the

frequency domain or by wavelet transformation in the time-frequency domain. Recently, empirical

mode decomposition(EMD) was invented in Huang et al. (1998), which enables to decompose a time

series into several components in the time domain. Note that the decomposition process is performed
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in the time domain, hence we do not need an inverse transformation for reconstructing the original

data. The component extracted by EMD is termed as intrinsic mode function(IMF). Through the

Hilbert transform, the sum of IMFs can be represented as a generalized Fourier expansion (Huang

et al., 1998) that means that the data might be decomposed into IMFs according to the spectral

characteristics of the data. Based on multiscale methods such as wavelet analysis or EMD, a time

series can be decomposed into several components that may be simpler than the original data.

Once the data are decomposed into simple components, it can be more feasible to analyze and

predict each component by classical models. In Oh et al. (2009), a time series of Korean stock

price index(KOSPI) 200 was analyzed by a multi-resolution approach that especially discussed the

applications of EMD and the Hilbert spectrum in Huang et al. (1998). The applications of EMD

in various fields were also briefly reviewed in Oh et al. (2009). In addition, a specific prediction

procedure based on EMD and the Hilbert spectrum was proposed in Kim et al. (2008) that analyzed

a real time series of cyber attacks. They suggested the following steps for prediction: 1) Obtain

IMFs of a time series through the EMD process. 2) Select some IMFs based on the cumulative

energy for IMFs. 3) Apply a vector AR model for the selected IMFs and polynomial regression to

the EMD residue. 4) Forecast each selected IMF and the EMD residue, respectively. 5) Predict the

time series by adding up all forecasting results. The prediction result by the above procedure was

compared with those by exponential smoothing and the Holt-Winters model in Kim et al. (2008).

In this paper, we are interested in the usage of EMD and the Hilbert spectrum among the multiscale

methods for predicting a time series. Naturally, we consider the procedure in Kim et al. (2008)

for predicting a time series. Instead selecting meaningful IMFs based on the cumulative energy

in Step 2); however, we propose a new method to decide input variables for the vector AR model

based on the principal component analysis(PCA) in order to predict the time series more efficiently.

Throughout two examples, we discuss the utility of adopting PCA in the prediction procedure based

on EMD and the Hilbert spectrum. By the newly proposed method adopting PCA, we also analyze

a real data set, the time series of cyber attacks in Kim et al. (2008).

This paper is organized as follows. Section 2 briefly introduces EMD and the Hilbert spectrum,

and explains the procedure for predicting cyber-attacks in Kim et al. (2008). Section 3 addresses

the reason to adopt PCA to the prediction procedure in Kim et al. (2008) as well as the newly

proposed procedure that adopts PCA. The real worm count data that represents cyber attacks are

analyzed in Section 4. Finally, Section 5 contains some concluding remarks.

2. The HHT-Based Prediction Procedure

2.1. Empirical mode decomposition

The EMD process, which was invented to analyze nonstationary and nonlinear signals in Huang et

al. (1998), decomposes a signal into locally zero symmetric components, IMFs. The IMF is defined

to be locally zero-symmetric in the meaning as follows: 1) The number of extrema and the number

of zero crossings in the whole data set must either be equal or differ by one. 2) The mean value of

the upper and lower envelopes at any point is zero. The upper (lower) envelope is defined by the

spline interpolation with knots at the local maxima (minima) in the signal.

In order to extract an IMF from the given signal y, the EMD process composes the following

steps for sifting: 1) Identify extrema in the signal. 2) Find the upper and lower envelopes by

constructing a cubic spline interpolation using maxima and minima as knots, respectively. 3) Take
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the average of two envelopes and denote it as m11. 4) Obtain the difference c11 between the signal

y and m11. That is, c11 = y −m11. 5) Treating c11 as the signal y, repeat the steps 1)∼4) and

obtain the next difference denoting as c12. After k iterations, the difference can be represented as

c1k = c1(k−1) −m1k. In addition 6) stop the sifting repetition if c1k satisfies the above two IMF

conditions. Now we have the first IMF as c1 = c1k. From the residue y − c1, we extract the second

IMF and finally obtain the successive n IMFs when the component cn is very small or the residue

rn is a monotonic function from which no more IMF can be extracted. The decomposition result

can be denoted as y =
∑n

j=1 cj + rn. Since we extract a higher frequency component earlier, note

that c1 is the most frequently oscillating component.

Historically, the EMD process was suggested to apply Hilbert transform to a signal for finding the

time-varying frequencies in it. The time-varying frequency named as instantaneous frequency(IF)

can be mathematically defined by Hilbert transform (Boashash, 1992). Since Hilbert transform

works correctly for zero-symmetric signals only, we need to decompose a signal into at least locally

zero symmetric components, IMFs. For specific examples related to zero symmetric signals and

Hilbert transform, refer to Huang et al. (1998). By EMD, we can properly apply Hilbert transform

to each IMF and also find its IF. The orthogonality and completeness of IMFs as a basis system

are well discussed in Huang et al. (1998). The stopping rule to prevent meaningless iteration of the

above step 4) is also suggested. For other details of EMD, refer to Huang et al. (1998).

2.2. The Hilbert spectrum

Through the (frequency) spectrum obtained by Fourier transform, we can represent a signal in

the frequency domain. If we expand a signal by Fourier transform, the representation would be

y(t) =
∑∞

j=1 aje
iwjt where aj is the Fourier coefficient of the signal y(t) at the frequency wj .

The powers based on aj expressed versus frequency can be called the spectrum. That is, Fourier

transform can support a global frequency-energy distribution for the signal. Note that we can only

consider constant frequencies {wj} in the Fourier analysis.

On the other hand, if x(t) = cosψ(t) is a sinusoid having a time varying frequency, then the IF of

x(t) is defined as

w(t) = ψ′(t) =
1

2π

d

dt
arg(z(t)), (2.1)

where z(t) = x(t) + iH[x(t)] = a(t) exp(i
∫
w(t)dt) is a complex form or analytic signal of x(t)

(Boashash, 1992). The H denotes Hilbert transform and a(t) =
√
x(t)2 +H[x(t)]2 represents the

amplitude of the analytic signal. After the signal y(t) is decomposed into IMFs by EMD, the

analytic signal can be represented as

z(t) = y(t) + iH[y(t)] =

n∑
j=1

{cj(t) + iH[cj(t)]} =

n∑
j=1

aj(t) exp

(
i

∫
wj(t)dt

)
. (2.2)

Since Hilbert transform can be properly applied to IMFs, we can obtain the IFs, {wj , j = 1, . . . , n},
from

∫
wj(t)dt = arctan(cj(t)/H[cj(t)). Now, similar to Fourier spectrum, we can have three dimen-

sional time-frequency-energy distribution using aj(t) on (t, wj(t)) for each IMF. This distribution

for all IMFs is denoted as Hilbert (amplitude) spectrum H(w, t), which is a local frequency-energy

distribution. Since the residue usually represents the trend of given signal and occupies much of

energy in the signal, we do not consider the residue for the efficient representation of IMFs in the

Hilbert spectrum.
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In Huang et al. (1998), the whole process of both EMD and the Hilbert spectrum is named Hilbert-

Huang transform(HHT).

2.3. The HHT-based prediction procedure

In Kim et al. (2008), the worm count data representing cyber attacks are analyzed and predicted

based on HHT and a vector AR model. The procedure can be described as follows. First, given time

series y is decomposed into n IMFs and a residue by the EMD process, that is, y =
∑n

j=1 cj + rn.

For the worm count data, six IMFs and a residue are produced. Second, obtain the local-frequency-

energy distribution or the Hilbert spectrum, H(w, t), for all IMFs. By adding the power up to

the kth IMF from the first one, the cumulative energy Ek is defined as Ek =
∑k

j=1

∑
t aj(t)

2/E

where E denotes the total energy,
∑n

j=1

∑
t aj(t)

2. Third, since the lower frequency components

may affect the main movement of the time series, several components starting from the nth IMF are

chosen based on the cumulative energy. Note that we select several lowest frequency components.

Apply a vector AR model to the selected IMFs and predict each IMF. Three IMFs are used as input

variables for the vector AR model in the worm count data analysis in Kim et al. (2008). Forth,

apply a polynomial regression to the residue and predict it. Finally, obtain the prediction result of

the given time series by joining all prediction results of the selected IMFs and the residue.

The specific result by the HHT approach for predicting a real data set are presented in Section 4

and compared with the HHT-PCA procedure suggested in the next section.

3. The Proposed Prediction Procedure

3.1. Necessity for adopting PCA

Consider a signal having several components as follows:

y =

p∑
i=1

ai cos 2πθit+ βt, (3.1)

where θ1 > · · · > θp. Under the assumption that the EMD process appropriately extracts IMFs,

the ith IMF may represent the ith component ai cos 2πθit. For example, IMF1 can be an estimator

of a1 cos 2πθ1t and the residue be an estimator of βt under the above assumption.

We generate two simple signals named Case A and Case B. Both have four components (p = 4) and

are designed for the EMD process to work properly. Hence, we can obtain four IMFs and a residue in

two examples as desired. With the same set of four frequencies for both cases, we put the amplitude

differently as (a1, a2, a3, a4)A = (0.7, 2,4, 1.5) for the Case A and (a1, a2, a3, a4)B = (0.7,4, 2, 1.5)

for the Case B. Two signals are shown in the first row in Figure 3.1.

Following the prediction procedure in Kim et al. (2008), the panels (a1) and (b1) show the cumu-

lative energy for IMFs by a black line. The energy of each IMF is represented by a blue line. As

expected in the amplitude design, the third component in the Case A has the largest part of energy

whereas the second component does in the Case B.

The panels (a2)∼(a4) show the estimation (by blue line) and prediction (by red line) results using

2∼4 IMFs for the vector AR model, respectively. We used 90% of data for modeling and 10% for

prediction. The panels (b2)∼(b4) are the same. In both cases, the IMFs representing slowly moving

components are firstly considered. For predicting the residue, we employ a polynomial regression
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Figure 3.1. Toy examples of Case A and Case B: The estimation and prediction results based on the HHT approach

and the prediction result for the residue is added to those from IMFs in all cases, (a2)∼(a4) and

(b2)∼(b4).

In the Case A, where the third component is the most dominant, the prediction result (a2) that

considers IMF4 and IMF3 for the vector AR process seems to be satisfactory to explain the main

trend of the signal in the Case A. However, the prediction result (b2) does not because the most

dominant component is estimated by IMF2 and IMF2 is not considered for the vector AR model

in (b2). Only after IMF2 is considered for predicting the data, a satisfactory result is provided as

shown in the panel (b3). The results (a4) and (b4) consider all four IMFs for prediction.

As demonstrated in these simple examples, we need to decide the number of IMFs being used for

predicting a time series satisfactory, case by case. Sometimes, we may need all n or almost all n−1

IMFs to obtain a meaningful prediction result, which means inefficiency for dimension reduction.

It would be better, therefore, to have a step for dimension reduction or proper feature extraction

among all IMFs for the HHT-based prediction procedure.
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Figure 3.2. Case A: The estimation and prediction results based on the suggested HHT approach combined with PCA

PCA has been widely used for the purpose of the dimension reduction and feature extraction. We

suggest to adopt PCA for the HHT prediction procedure and the detailed procedure is explained

in the following section.

3.2. The proposed prediction procedure

The procedure of the proposed method is as follows: 1) Perform the EMD process to the given time

series y. 2) Fulfill PCA to the n IMFs and obtain principal components(PCs). Based on the Scree

plot, select some PCs. 3) Apply a vector AR model to the selected PCs and a polynomial regression

model to the residue. Obtain the prediction result of each component. 4) Add all prediction results

and predict y with the sum.

Figure 3.2 shows the estimation (by blue line) and prediction (by red line) results of the Case A by

the proposed method in the third column. All green lines represent the given signal. The extracted

PCs are in the second column. We can see that the PC1 is close to IMF3, which is designed to be

the dominant component in the signal. In the Case A, each PC is similar to one of the IMFs. By

adopting a PCA step and using PCs as input variables of a vector AR model, we can obtain the

desired prediction result in (a2). Note that in (a2), where we used two PCs, at Figure 3.2, we had

the similar prediction result to (a3), where we hired three IMFs, at Figure 3.1. This implies that

we can more automatically select appropriate variables by adopting a PCA step.
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Figure 3.3. Case B: Estimation and prediction results based on HHT and PCA

Table 3.1. MSEs for the reconstruction results (by using 90 % of data)

Case A Case B

Number of inputs 2 3 4 2 3 4

HHT 2.246 0.246 0.000 8.206 0.249 0.000

HHT & PCA 1.118 0.335 0.092 0.499 0.243 0.005

The results for the Case B are shown in the Figure 3.3. In this case, the PC1 indicates the dominant

component IMF2, and the PC2 and PC3 are the mixtures of the IMF3 and IMF4. Since PCA can

extract main features - PCs as linear combinations of IMFs based on the variance structure, we

expect efficient prediction results using a few PCs. The result (b2) by two PCs in Figure 3.3 is

similar to (b3) by three IMFs in Figure 3.1.

Table 3.1 shows the mean square error(MSE) when we use 90% of data for a vector AR modeling.

HHT means that we apply the HHT approach with several IMFs whereas HHT & PCA denotes

that we use the proposed prediction procedure by adopting a PCA step. Comparing to the MSE

values, 2.246 for Case A and 8.206 for Case B, when we use 2 IMFs(IMF4 and IMF3) as input

variables, the MSEs when we employ 2 PCs(PC1 and PC2) as input variables is relatively lower as

1.118 for Case A and 0.499 for Case B.

Consequently, adopting a PCA step to the prediction approach based HHT could perform a role of

more automatic variable selection or proper feature extraction for a vector AR model in the HHT

prediction approach.
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Figure 4.1. The worm count data from August 1, 2005 to October 9, 2006
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Figure 4.2. The worm count data analysis: Comparison the prediction results based on HHT vs. HHT and PCA

4. Worm Count Data Analysis

As a signal representing cyber-attacks, the worm count data are shown in Figure 4.1. The data

were observed for 435 days from August 1, 2005 to October 9, 2006 and the original source of the

data is on the website of Ahn Lab, http://www.ahnlab.com. As explained in Kim et al. (2008), it

seems to be difficult to find a specific pattern in the signal. However, we would like to predict the

last 30 days of the time series based on the proposed HHT-PCA prediction procedure.

The close looks on the prediction results by the HHT vs. HHT-PCA approaches, respectively, are

shown in Figure 4.2. The prediction results by the HHT approach in Kim et al. (2008) by using

2∼6 IMFs as input variables are shown by red lines. The dotted lines indicate 95% confidence
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intervals. The blue lines show the prediction results based on the proposed HHT-PCA prediction

procedure. When we used all six IMFs or PCs, the results are similar as shown in the panel of

Prediction (6). However, we can see that the usage of two PCs in the panel of Prediction (2) can

follow the prediction result by using all IMFs. Since the proposed method can give priority to small

scale movement in the signal when it dominates the signal, it seems to obtain a more desirable

result with less number of input variables.

The specific process is as follows. The IMFs and the residue by EMD are shown in the left column

in Figure 4.3. The First IMF has the most energy in the signal as shown in the first panel on the

right column. By following the HHT-based prediction procedure, the prediction result for the last

30 days are represented by red lines in (2)∼(6). The panel (2) considers IMF6 and IMF5, (3) does

IMF6∼IMF4, . . . , and finally (6) contains all IMFs for the vector AR modeling. The MSEs between

the signal (represented by a green line) and the reconstruction result by several IMFs (represented

by a blue line in each panel) are displayed in the last panel. We also observe that the first IMF

dominates the MSE plot.

Based on the proposed HHT and PCA prediction approach, the reconstruction and prediction results

are shown in Figure 4.4. The PCs automatically selected by the variance structure are shown in the

left column. The first PC reflects the first IMF and other PCs seems to be linear combinations of

IMFs. The first PC dominates the signal as revealed in the Scree plot. The reconstruction results

are described by blue lines and the prediction results are by red lines. By using only two PCs, we

can obtain the similar pattern to (6) by all IMFs in Figure 4.3. The panel showing MSE versus the

number of PCs supports the efficiency of the feature selection by adopting the PCA step.

5. Concluding Remarks

In this paper, we focus on the prediction procedure based on the HHT approach, and propose a new

prediction method that is a novel combination of HHT and PCA. By adopting PCA, the proposed

prediction procedure can consider the dominant component first even though the dominant one is

not the most slowly oscillatory. We can also obtain a new feature as an input variable for prediction

modeling that is a linear combination of some IMFs.

Before closing this paper, we would like to mention an accompanying benefit of the adoption PCA

and to pay attention in the use of the decomposition approach. First, the EMD process is not

perfect and can product inappropriate IMFs so that the direct usage of IMFs for a vector AR

model could be risky for the prediction. For example, EMD can divide four components into seven

meaninglessly distorted ones. In this case, to select meaningless two lowest frequency components

(least oscillating IMFs) might produce a nonsensical prediction result. On the other hand, since

PCA can produce a linear combination of IMFs which could become a meaningful component, we

may expect the alleviation of the negative effect of EMD to the prediction.

Second, as stated in the introduction, we choose to decompose given signal into simple components

for appropriate prediction. As a prediction method, we use a vector AR model that is widespread

but assumes the stationarity of input variables. Therefore, we need to pay attention not to apply

the proposed method to apparently nonstationary IMFs, even though EMD can support nonlinear

and nonstationary signals and IMFs can have time-varying frequencies. For example, if a dominant

component is a linear chirp signal whose frequency is rapidly linearly-increasing or decreasing,

then the prediction result cannot be appropriate. For the components having rapidly time-varying

frequencies, we can apply an IF estimation method but this is beyond the scope of this paper.
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Figure 4.3. The worm count data analysis: Estimation and prediction results based on the HHT approach
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Figure 4.4. The worm count data analysis: Estimation and prediction results based on the proposed HHT and PCA approach
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