• Title/Summary/Keyword: primal-dual method

Search Result 62, Processing Time 0.024 seconds

A Study on Primal-Dual Interior-Point Method (PRIMAL-DUAL 내부점법에 관한 연구)

  • Seung-Won An
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.801-810
    • /
    • 2004
  • The Primal-Dual Interior-Point (PDIP) method is currently one of the fastest emerging topics in optimization. This method has become an effective solution algorithm for large scale nonlinear optimization problems. such as the electric Optimal Power Flow (OPF) and natural gas and electricity OPF. This study describes major theoretical developments of the PDIP method as well as practical issues related to implementation of the method. A simple quadratic problem with linear equality and inequality constraints

A Study of stability for solution′s convergence in Karmarkar's & Primal-Dual Interior Algorithm (Karmarkar's & Primal-Dual 내부점 알고리즘의 해의 수렴과정의 안정성에 관한 고찰)

  • 박재현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.93-100
    • /
    • 1998
  • The researches of Linear Programming are Khachiyan Method, which uses Ellipsoid Method, and Karmarkar, Affine, Path-Following and Interior Point Method which have Polynomial-Time complexity. In this study, Karmarkar Method is more quickly solved as 50 times then Simplex Method for optimal solution. but some special problem is not solved by Karmarkar Method. As a result, the algorithm by APL Language is proved time efficiency and optimal solution in the Primal-Dual interior point algorithm. Furthermore Karmarkar Method and Primal-Dual interior point Method is compared in some examples.

  • PDF

Primal-Interior Dual-Simplex Method and Dual-Interior Primal-Simplex Method In the General bounded Linear Programming (일반한계 선형계획법에서의 원내부점-쌍대단체법과 쌍대내부점-원단체법)

  • 임성묵;김우제;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • In this paper, Primal-Interior Dual-Simplex method(PIDS) and Dual-Interior Primal-Simplex method(DIPS) are developed for the general bounded linear programming. Two methods were implemented and compared with other pricing techniques for the Netlib. linear programming problems. For the PIDS, it shows superior performance to both most nagative rule and dual steepest-edge method since it practically reduces degenerate iterations and has property to reduce the problem. For the DIPS, pt requires less iterations and computational time than least reduced cost method. but it shows inferior performance to the dynamic primal steepest-edge method.

  • PDF

POLYNOMIAL COMPLEXITY OF PRIMAL-DUAL INTERIOR-POINT METHODS FOR CONVEX QUADRATIC PROGRAMMING

  • Liu, Zhongyi;Sun, Wenyu;De Sampaio, Raimundo J.B.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.567-579
    • /
    • 2009
  • Recently, Peng et al. proposed a primal-dual interior-point method with new search direction and self-regular proximity for LP. This new large-update method has the currently best theoretical performance with polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$). In this paper we use this search direction to propose a primal-dual interior-point method for convex quadratic programming (QP). We overcome the difficulty in analyzing the complexity of the primal-dual interior-point methods for convex quadratic programming, and obtain the same polynomial complexity of O($n^{\frac{q+1}{2q}}\;{\log}\;{\frac{n}{\varepsilon}}$) for convex quadratic programming.

  • PDF

내부해로부터 최적기저 추출에 관한 연구

  • 박찬규;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.24-29
    • /
    • 1996
  • If the LP problem doesn't have the optimal soultion uniquely, the solution fo the primal-dual barrier method converges to the interior point of the optimal face. Therefore, when the optimal vertex solution or the optimal basis is required, we have to perform the additional procedure to recover the optimal basis from the final solution of the interior point method. In this paper the exisiting methods for recovering the optimal basis or identifying the optimal solutions are analyzed and the new methods are suggested. This paper treats the two optimal basis recovery methods. One uses the purification scheme and the simplex method, the other uses the optimal face solutions. In the method using the purification procedure and the simplex method, the basic feasible solution is obtained from the given interior solution and then simplex method is performed for recovering the optimal basis. In the method using the optimal face solutions, the optimal basis in the primal-dual barrier method is constructed by intergrating the optimal solution identification technique and the optimal basis extracting method from the primal-optimal soltion and the dual-optimal solution.

  • PDF

Analysis on Spatial Sampling and Implementation for Primal Trees (Primal Tree의 공간 분할 샘플링 분석 및 구현)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.347-355
    • /
    • 2014
  • The general octree structure is common for various applications including computer graphics, geometry information analysis and query. Unfortunately, the general octree approach causes duplicated sample data and discrepancy between sampling and representation positions when applied to sample continuous spatial information, for example, signed distance fields. To address these issues, some researchers introduced the dual octree. In this paper, the weakness of the dual octree approach will be illustrated by focusing on the fact that the dual octree cannot access some specific continuous zones asymptotically. This paper shows that the primal tree presented by Lefebvre and Hoppe can solve all the problems above. Also, this paper presents a three-dimensional primal tree traversal algorithm based the Morton codes which will help to parallelize the primal tree method.

Flexible Mixed decomposition Method for Large Scale Linear Programs: -Integration of a Network of Process Models-

  • Ahn, Byong-Hun;Rhee, Seung-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1986
  • In combining dispersed optimization models, either primal or dual(or both) decomposition method widely used as an organizing device. Interpreting the methods economically, the concepts of price and resource-directive coordination are generally well accepted. Most of deomposition/ integration methods utilize either primal information of dual information, not both, from subsystems, while some authors have developed mixed decomposition approaches employing two master problems dealing primal and dual proposals separately. In this paper a hybrid decomposition method is introduced, where one hybrid master problem utilizes the underlying relationships between primal and dual information from each subsystem. The suggested method is well justified with respect to the flexibility in information flow pattern choice (some prices and other quantities) and to the compatibility of subdivision's optimum to the systemwide optimum, that is often lacking in conventional decomposition methods such as Dantzig-Wolfe's. A numerical example is also presented to illustrate the suggested approach.

  • PDF

Efficient Implementation Techniques the Dual Simplex Method (쌍대단체법의 효율적인 구현을 위한 기법)

  • 임성묵;박찬규;김우제;박순달
    • Korean Management Science Review
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • The purpose of this paper is to develope efficient techniques for implementing the dual simplex method. In this paper we proposed one artificial row technique to get an initial dual feasible basic solution, a dual steepest-edge method coupled with a dropping row selection rule, and an anti-degeneracy technique which resembles the EXPAND procedure for the primal simplex method. The efficiency of the above techniques is shown by experiments. Finally, the dual simplex method is shown to be superior to the primal simplex method when it is used in the integer programming.

  • PDF

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.521-534
    • /
    • 2009
  • In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

NEW PRIMAL-DUAL INTERIOR POINT METHODS FOR P*(κ) LINEAR COMPLEMENTARITY PROBLEMS

  • Cho, Gyeong-Mi;Kim, Min-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-669
    • /
    • 2010
  • In this paper we propose new primal-dual interior point methods (IPMs) for $P_*(\kappa)$ linear complementarity problems (LCPs) and analyze the iteration complexity of the algorithm. New search directions and proximity measures are defined based on a class of kernel functions, $\psi(t)=\frac{t^2-1}{2}-{\int}^t_1e{^{q(\frac{1}{\xi}-1)}d{\xi}$, $q\;{\geq}\;1$. If a strictly feasible starting point is available and the parameter $q\;=\;\log\;\(1+a{\sqrt{\frac{2{\tau}+2{\sqrt{2n{\tau}}+{\theta}n}}{1-{\theta}}\)$, where $a\;=\;1\;+\;\frac{1}{\sqrt{1+2{\kappa}}}$, then new large-update primal-dual interior point algorithms have $O((1\;+\;2{\kappa})\sqrt{n}log\;n\;log\;{\frac{n}{\varepsilon}})$ iteration complexity which is the best known result for this method. For small-update methods, we have $O((1\;+\;2{\kappa})q{\sqrt{qn}}log\;{\frac{n}{\varepsilon}})$ iteration complexity.