• Title/Summary/Keyword: prestressing force

Search Result 189, Processing Time 0.031 seconds

The Inclination Characteristics of PSC BOX in FCM Bridge Construction Method (FCM 교량 가설 공법에서 주두부의 기울음 특성)

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • This study presents basic data on how to secure stability by analyzing the change in tensile force of steel rod and the inclination characteristics of PSC BOX in the "Temporary fixation system using internal prestressing tendon", which is mainly applied to construction of superstructures by FCM. To date, it has been difficult to confirm the changes in tension force of the steel rod and the inclination of the PSC BOX because the steel rod was installed vertically inside the pier and the PSC BOX. Therefore, measurement of the change in length of the steel rod and the displacement of PSC BOX were performed using a micro-measured FBG sensor. Comparisons of the calculated tensile force and the residual tensile force of the steel rod revealed that the safety factor decreased in all bridges. The cause was mainly identified to be the loss of tensile force in fixation~1segment, and countermeasures are suggested. The analysis of the inclination characteristics showed that the inclination increased with the segment progresses even in bridges with sufficient safety factor, and the difference before and after the segment was confirmed. In addition, the increase in inclination was related to the loss of tension force in the steel rod, and the stress on the opposite sides of the inclination was further reduced. It is believed that upward tensile force is generated in the steel rod on the opposite side of the inclined side due to the unbalanced moment, causing the difference in stress of the steel rod between the two sides.

Optimum Design of Prestressed Precast Gerber-U Beams (프리스트레스트 프리캐스트 게르버 U형보의 최적설계)

  • 김인규;박현석;이종민;조상규;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.173-178
    • /
    • 2001
  • The cost on transmission and election of precast concrete members largely depends on the weight of them. In this study, the weight of prestressed precast beam could be reduced by control the section and prestressing force to meet the required strength on the basis of the optimum process. The top and bottom concrete stress of the section considered is required to check according to each construction step for this process. The original rectangular beam weight could be reduced up to 50~39% due to the development of a U-beams from the optimum process.

  • PDF

An Experimental Study on the Flexural Behavior of RC Beams Strengthened with Externally Prestressed CFRP Plate (탄소판으로 외부 긴장된 철근콘크리트보의 휨거동에 관한 실험연구)

  • Park Jong Sup;Park Young Hwan;You Young Jun;Jung Woo Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.72-75
    • /
    • 2004
  • Carbon Fiber Reinforced Polymer(CFRP) composites are widely applied to strengthen deteriorated concrete structures. This paper presents the experimental results of the performance of reinforced concrete(RC) beams strengthened with externally prestressed CFRP plates. Simple beams with 3 m span length were tested to investigate the effect of prestressing force of CFRP plates on the flexural behavior of externally strengthened RC beams.

  • PDF

Development of the Life Management D/B System for Concrete Structures in Nuclear Power Plants (원전 콘크리트 구조물의 수명관리 D/B 시스템 개발)

  • 이종석;김도겸;함영승;임재호;송영철;조명석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.637-642
    • /
    • 1998
  • This study was performed to develop effective management system of concrete structures in Nuclear Power Plants. This D/B system includes three kinds of data : 1)visual inspection data(cracking, spalling, etc.) 2) durability data carbonation, chloride attack, etc. 3) in-service inspection data(prestressing force. material properties, etc. ) By using the life management D/B System, the field engineers can easily acquire the information about the various inspection data. repair and accidental histories of structures. This system, will contribute to the efficient life management of concrete structures.

  • PDF

Strut-Tie Model Analysis of PSC Simple Anchorage Zone (PSC부재 단순 정착부의 스트럿-타이 모델 해석)

  • Son, Woo-Hyun;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.269-272
    • /
    • 2006
  • The anchorage zone of prestressed concrete members is a critical region where a large concentrated force due to prestressing by tendons is introduced. In this study, the ACI, AASHTO LRFD, CEB-FIP design criteria and the nonlinear strut-tie model approach are applied to the ultimate strength analysis of simple anchorage zones of 18 post-tensioned concrete members tested to failure. From the result of ultimate strength analysis, the advantages and disadvantages of each method are compared and discussed.

  • PDF

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

An Experimental Study on Transfer Length of Domestic CFRP Tendon (국내 CFRP 긴장재의 전달길이에 관한 실험적 연구)

  • Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.303-310
    • /
    • 2009
  • CFRP(carbon fiber reinforced polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of CFRP tendons such as bond strength, transfer length, and development length should be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important factor. A total of 9 beams have been cast to determine transfer length and development length of domestic CFRP tendon in this paper. Test results revealed that transfer length of the prestressing 25% and 50% are 34D, 55D respectively. Also, transfer length has increased as the prestressing force has increased. A change was observed in transfer length of developed CFRP tendon after 9 weeks. ${\alpha}_t$ of developed CFRP tendon was 2.3 similar to the steel strand.

Evaluation of Friction Coefficients of Prestressing Tendon Using Field Data (실측값을 활용한 긴장재 마찰계수의 산정)

  • Jeon, Se-Jin;Park, In-Kyo;Kim, Kwang-Soo;Lee, Man-Seop;Cho, Jae-Yeol;Park, Chan-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.297-300
    • /
    • 2008
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data and classical theory related to the friction. The procedure is applied to two PSC girder bridges with various tendon profiles. The resulting values are compared with those presented in some specifications and assumed in jacking. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but are more or less similar to the lower limit of domestic standards, while the curvature friction coefficients approach or slightly exceed the upper limit of the same standards.

  • PDF

Reduction of Prestress Loss in PSC (Prestressed Concrete) Continuous Girder by Employing Block-out Method (지점부 블록아웃 공법으로 연속화된 프리스트레스트 콘크리트 거더의 긴장력 손실 저감)

  • Shin, Kyung-Joon;Kim, Yun-Yong;Kim, Seung-Jin;Choo, Tae-Heon;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2014
  • Prestressed concrete girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. In certain situations, the prestressing tendon is supposed to be bent by the construction error and the radius of curvature at the continuous joint of PSC girders, and this leads to the loss of prestressing force. However, this kind of prestress loss is not considered in the design and construction processes. This study proves that the prestress loss occurs at the continuous joint due to the local bending of tendon by the construction error or the radius of curvature. Also, a method that can reduce this type of prestress loss is proposed, and proved by the experiment. The result shows that maximum 10% of prestress loss occurs at the continuous joint and the proposed block-out method can reduce the prestress loss ratio by maximum 5%, approximately. This means that the block-out method can enhance the prestressing efficiency of continuous PSC girder bridges.

Ultimate Analysis of RC Beam with Unbonded Prestressing CFRP Plate (비부착 CFRP 판으로 긴장된 RC 보의 극한해석)

  • Lee, Jae-Seok;Choi, Kyu-Chon;Park, Young-Ha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.249-252
    • /
    • 2008
  • A study for the nonlinear analysis method of RC(Reinforced Concrete) beams with unbonded prestressing CFRP plate is presented. The cross-section of RC beam element is idealized as an assemblage of concrete and reinforcing steel fibers in order to account for varied material properties within the cross-section of the element. The unbonded CFRP plate is modeled as a series of the CFRP plate segments each of which is linked to the RC beam element, but slips without any resistance to simulate the unbonded behavior of the CFRP plate. The stress of each CFRP plate segment is redistributed iteratively using the force equilibrium relationship at each common node until it reaches at the same stress level. To evaluate the validity of the proposed analysis method, the results of ultimate analysis of the reinforced concrete beams with unbonded prestressing CFRP plates are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well.

  • PDF