• Title/Summary/Keyword: prestressing force

Search Result 189, Processing Time 0.02 seconds

Flexural Strengthening with Wire Rope Using the Tightening Force of Bolts (볼트 조임력에 의한 와이어로프의 휨 보강)

  • Kim, Sun-Young;Song, Jin-Gyu;Lee, Yeong-Wook;Byeon, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.165-176
    • /
    • 2006
  • This paper deals with the experiment and construction case of concrete beams strengthened with wire rope using the tightening force of bolts. The mechanical bolting of wire rope for prestressing force is adopted, which is very easy for construction. For the flexural strengthening effect of the proposed method, the experiment was proceeded as follows. The main parameters of specimens, concrete strength is 24MPa, are initial prestressing forces of wire rope and the number of saddle. The flexural strengths of strengthened specimens compared with non-strengthened test piece were increased about 160%. Also, as the initial prestressing forces were increased, the crack and ultimate moments were increased. The number of saddle did not play an important role for the moment capacity. This proposed method as a construction example showed a more competitive method than any others.

Static Load Tests on Flexural Strength and Crack Serviceability of a Longitudinal Joint for the Slab-Type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량 종방향 연결부의 휨강도 및 균열 사용성에 관한 정적재하실험)

  • Lee, Jung-Mi;Lee, Sang-Yoon;Song, Jae-Joon;Park, Kyung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.137-145
    • /
    • 2015
  • The slab-type precast modular bridge consists of the precast slab bridge modules which are connected in the transverse direction. The longitudinal joints between the precast slab bridge modules are filled with cast-in-place mortar. The construction of the slab-type precast modular bridge is completed by applying the prestressing force on the longitudinal joints. In this study, 4-points bending tests and 3-points bending tests were conducted to examine the effects of the prestressing force and the shape of joint on the flexural strength and crack serviceability of longitudinal joint. The results of 4-points bending tests showed that the flexural strength is affected by the prestressing force but not by the shape of join. From the results of 3-points bending tests by which the bending moment and the shear force are simultaneously applied on the joints of the specimens, it is observed that the shape of joint affects on the flexural strength and the crack behavior. The results of two types of bending tests confirmed that the prestressing force according to the design code is appropriate and the joint with two shear keys gives the better performances against the crack of joint.

Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder (PS 긴장재 긴장력 계측을 위한 PSC 거더 내부 매립용 EM 센서)

  • Park, Jooyoung;Kim, Junkyeong;Zhang, Aoqi;Lee, Hwanwoo;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.691-697
    • /
    • 2015
  • In this paper, an embedded EM sensor was researched to estimate prestressing force of PS tendon in PSC girder. Recent methodologies for managing prestressing force loss were staying on verifying a applying prestressing force under construction, namely the loss management can not be controlled after construction. To estimate the tensile force of PS tendon during lifetime of PSC girder, this research proposed a bobbin-type embedded EM sensor that can be embedded in PSC girder is designed and fabricated considering the shape properties of anchorage zone and sheath. To verify the proposed sensor, a small PSC girder test was performed. The embedded EM sensor was connected to a sheath and anchor block, and the concrete was poured. After curing, the change of the permeability of PS tendon under tensile forces of 200, 710, 1070, 1300kN was measured using embedded EM sensor. The permeability of PS tendon had decreased according to the increment of applied tensile force. Also it is confirmed that the change of permeability due to applied tensile force could resolve the applied tensile force values. As a result, proposed embedded EM sensor could be embed into the PSC girder and it could be used to estimate the tensile force variation during lifetime of PSC girder.

Optimum design of prestressed concrete beams by a modified grid search method

  • Cagatay, Ismail H.;Dundar, Cengiz;Aksogan, Orhan
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.39-52
    • /
    • 2003
  • A computer program has been developed for the optimum design of prestressed concrete beams under flexure. Optimum values of prestressing force, tendon configuration, and cross-sectional dimensions are determined subject to constraints on the design variables and stresses. 28 constraints have been used including flexural stresses, cover requirement, the aspect ratios for top and bottom flanges and web part of a beam and ultimate moment. The objective function contains cost of concrete, prestressing force and formwork. Using this function, it is possible to obtain minimum cost design, minimum weight or cross-sectional area of concrete design and minimum prestressing force design. Besides the idealized I-shaped cross-section, which is widely used in literature, a general I-shaped cross-section with eight geometrical design variables are used here. Four examples, one of which is available in the literature and the others are modified form of it, have been solved for minimum cost and minimum cross-sectional area designs and the results are compared. The computer program, which employs modified grid search optimization method, can assist a designer in producing efficient designs rapidly and easily. Considerable savings in computational work are thus made possible.

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

Performance of non-prismatic simply supported prestressed concrete beams

  • Raju, P. Markandeya;Rajsekhar, K.;Sandeep, T. Raghuram
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.723-738
    • /
    • 2014
  • Prestressing is the most commonly employed technique in bridges and long span beams in commercial buildings as prestressing results in slender section with higher load carrying capacities. This work is an attempt to study the performance of a minimum weight prestressed concrete beam adopting a non-prismatic section so that there will be a reduction in the volume of concrete which in turn reduces the self-weight of the structure. The effect of adopting a non-prismatic section on parameters like prestressing force, area of prestressing steel, bending stresses, shear stresses and percentage loss of prestress are established theoretically. The analysis of non-prismatic prestressed beams is based on the assumption of pure bending theory. Equations are derived for dead load bending moment, eccentricity, and depth at any required section. Based on these equations an algorithm is developed which does the stress checks for the given section for every 500 mm interval of the span. Limit state method is used for the design of beam and finite difference method is used for finding out the deflection of a non-prismatic beam. All the parameters of nonprismatic prestressed concrete beams are compared with that of the rectangular prestressed concrete members and observed that minimum weight design and economical design are not same. Minimum weight design results in the increase in required area of prestressing steel.

Bond mechanism of 18-mm prestressing strands: New insights and design applications

  • Dang, Canh N.;Marti-Vargas, Jose R.;Hale, W. Micah
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • Pretensioned concrete (PC) is widely used in contemporary construction. Bond of prestressing strand is significant for composite-action between the strand and concrete in the transfer and flexural-bond zones of PC members. This study develops a new methodology for quantifying the bond of 18-mm prestressing strand in PC members based on results of a pullout test, the Standard Test for Strand Bond (STSB). The experimental program includes: (a) twenty-four pretensioned concrete beams, using a wide range of concrete compressive strength; and (b) twelve untensioned pullout specimens. By testing beams, the transfer length, flexural-bond length, and development length were all measured. In the STSB, the pullout forces for the strands were measured. Experimental results indicate a significant relationship between the bond of prestressing strand to the code-established design parameters, such as transfer length and development length. However, the code-predictions can be unconservative for the prestressing strands having a low STSB pullout force. Three simplified bond equations are proposed for the design applications of PC members.

Time dependent service load behaviour of prestressed composite tee beams

  • Uy, Brian
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.307-327
    • /
    • 1997
  • This paper is concerned with the time dependent service load behaviour of prestressed composite tee beams. The effects of creep and shrinkage of the concrete slab are modelled using the age adjusted effective modulus method and a relaxation approach. The tendon strain is determined considering compatibility of deformations and equilibrium of forces between the tendon and the composite tee beam. A parametric study is undertaken to study the influence of various aspects on the stress, strain and deformations of the concrete slab, steel beam and prestressing tendon. The effect of loading type and tendon relaxation has also been considered for various types of prestressing tendon materials. Recommendations are then made in relation to adequate span to depth ratios for varying levels of prestressing force.

Numerical study of a new constructive sequence for movable scaffolding system (MSS) application

  • Teran, Jose Ramon Diaz de;Haach, Vladimir Guilherme;Turmo, Jose;Jorquera, Juan Jose
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.173-194
    • /
    • 2016
  • This paper consists in a study of a new contructive sequence of road viaducts with Movable Scaffolding System (MSS) using numerical tools based on finite element method (FEM). Traditional and new sequences are being used in Spain to build viaducts with MSS. The new sequence permits an easier construction of one span per week but implies some other issues related to the need of two prestressing stages per span. In order to improve the efficiency of the new sequence by reducing the number of prestressing stages per span, two solutions are suggested in this study. Results show that the best solution is to introduce the 100% of the prestressing force at the self-supporting core in order to improve the road viaduct construction with movable scaffolding system by reducing execution time without increasing economic costs.

Transverse Stress of Slabs due tp Longitudinal Prestressing in Prestressed Concrete Box Girders (프리스트레스트 콘크리트 박스 거더의 종방향 프리스트레싱에 의한 슬래브의 횡방향 응력)

  • Yang, In-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.679-688
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs, longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper, the method to estimate transverse effects induced by longitudinal prestressing is proposed. The concept of transverse equivalent loading which is calculated through longitudinal prestressing analysis is developed. The transverse stress in slabs of box girders due to longitudinal prestressing are investigated. The comparison of numerical results of the proposed method and those of folded plate method represents that the method is reasonable. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of transverse stress in slabs of box girder is not so large. However, if the other stresses due to dead and live load et al. are superposed on these stresses, it may be that the longitudinal prestressing effects are significant.