• 제목/요약/키워드: pressure wave propagation

검색결과 214건 처리시간 0.03초

축소관과 확대관 출구로부터 방출되는 펄스파에 관한 연구 (A Study on the Impulse Waves Discharged from the Exit of the Convergent and Divergent Pipes)

  • 이동훈;이명호;권용훈;김희동;박종호
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.346-354
    • /
    • 2002
  • The present study is to investigate the propagation characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing (TVD) scheme. For the computational work, several initial compression waves are assumed inside the pipe so that those are the same to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is found that the convergent pipe can play a role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

방전에 의한 프라즈마에서의 마이크로파 전파특성 (The Properties of Microwave Propagation in Discharging Plasma)

  • 양인응;노방현;김봉열
    • 대한전자공학회논문지
    • /
    • 제5권3호
    • /
    • pp.31-39
    • /
    • 1968
  • 외부자계가 가해진 냉프라즈마에서의 마이크로파 전파 특성을 측정하였다. 직류방전프라즈마는 두 전극판을 구형도파관에 삽입한것과, 또한 유리시설관을 구형도파관에 삽입한 것에서 이루어졌다. 마이크로파 전파방향, 방전관축, 외부자계는 각각 수직이고, 자속밀도, 방전유기, 기체압등이 증가할때 프라즈마를 전파하는 마이크로파의 감쇠 및 흡수는 증가함을 보았다.

  • PDF

자동차 배기계의 배기압 감응형 제어 머플러 개발(1) -배기계의 일반 특성과 제어 밸브의 특성- (The Development of Muffler with Controller Sensing Exhaust Gas Pressure in Automobile Exhaust System(1) -The general characteristics of exhaust system and characteristics of control valve-)

  • 이해철;이준서;윤준규;차경옥
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2001
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develop a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers.

  • PDF

대규모 간선에 있어서 써차지 흐름에 동반되는 맨홀뚜껑 비산현상에 관한 연구 (A Study of Manhole Bursting due to Surcharged Flow in Large Sewer System)

  • 최성열
    • 한국방재학회 논문집
    • /
    • 제4권2호
    • /
    • pp.53-59
    • /
    • 2004
  • 본 연구는 집중호우 시에 발생하는 맨홀뚜껑의 비산(飛散)현상의 원인을 수리모형과 수치모형(SWMM)을 사용하여 밝힌 연구이다. 대규모 간선에서 써차지 흐름의 급격한 수두상승 현상에 대해 수치모형과 수리모형 결과가 매우 잘 일치하였다. 맨홀 뚜껑이 비산 하는 현상의 원인은 펌프장의 게이트 조작이나 간선의 막힘 등으로 발생하는 써차지 흐름에 따른 압력전파에 의해 기인하는 맨홀 내 잔존 압축공기괴의 맨홀에서의 팽창 분출에 의한 것으로 나타났다.

혈액에 의한 초음파 산란의 이론적 고찰 (A Theoretical Study of Ultrasound Scattering by Blood)

  • 최재준;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제2권1호
    • /
    • pp.15-20
    • /
    • 1981
  • In this study, the scattering of ultrasound by blood is theoretically studied. At first, the Chernow equation which represents acoustic propagation inside the region of inhomogenieties is modified to be fitted for blood. Then, scattering amplitude and scattering Cross-section at the far-field region are obtained from this equation. In this case, hemotocrit is assumed to be less than 26 per cent, and the red blood cell is modeled as independent scatterer. This study also develops a practical approximation for the backscattering of periodic sinewave bursts by a volume of randomly distributed scatterers, i.e., whole red blood cells. This expression for the received backscattering ultrasound pressure after the n-th burst of narrowband transducer is obtained from an ideal continuous wave transducer's response.

  • PDF

고해상도수치기법에 의한 원형실린더 주위의 3차원 후류유동 특성연구 (High order computation on the three dimensional wakes past a circular cylinder)

  • 이상수;김재수;김태수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.622-625
    • /
    • 2008
  • While the research for flow over a circular cylinder has been actively carried out up to the present, it has been known that the flow has not been clarified even now. Various complex flow and aero-acoustic characteristics exist around a circular cylinder such as flow separation, wake and pressure wave propagation. In this paper, research was carried out for wake flow and aeroacoustics over a circular cylinders by using high order, high resolution techniques that are used in two dimensional aero- acoustic analysis. OpenMP parallel processing method was used. For the numerical result, the periodic characteristic of Strouhal Number due to vortex shedding was comparatively analyzed with other experiment values and two dimensional numerical results.

  • PDF

위상최적화를 이용한 수중음향렌즈의 설계 (Underwater Acoustic Lens Design Using Topology Optimization)

  • 장강원;;조완호;권휴상;조승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

차분격자볼츠만법에 의한 저Mach수 영역 edge tone의 유체해석 (Fluid analysis of edge Tones at low Mach number using the finite difference lattice Boltzmann method)

  • 강호근;김정환;김유택;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.113-118
    • /
    • 2004
  • This paper presents a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method (FDLBM). We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of $\alpha=23^0$. At a stand-off distance $\omega$, the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and th propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. The lattice BGK model for compressible fluids is shown to be one of powerful tool for computing sound generation and propagation for a wide range of flows.

  • PDF

기계평면시일에서 온도전파를 위한 파속도의 이론적해석 (ANALYSIS OF WAVE VELOCITY FOR TEMPERATURE PROPERGATION IN A MECHANICAL FACE SEAL)

  • 김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1987년도 제5회 학술강연회초록집
    • /
    • pp.50-56
    • /
    • 1987
  • A mechanical face seal is most commonly used to seal liquids and gases at various speeds, pressures and temperatures. The primary seal ring is in sliding contact with the seal seat and as a result heat in the vicinity of the interface is generated. Local temperatures at points along the circumferential direction will fluctuate as asperities on the surfaces pass. This kind of fluctuation of temperature has been investigated to take place. This may lead to the hot spots phenomenon between the contacting asperities. Sibley and Allen showed photographic evidence of systemically moving hot spots in the contact zone. The appearance of such a temperature disturbance has been attributed to a kind of thermoelastic instabilities between two surfaces: This involves a feedback loop which comprises localized elevation of frictional heating, resultant localized thermal bulding, localized pressure increase as the result of the bulging and futher elevation of frictional heating as the result of the pressure increase. The heating of hot spots will be continued until the expanded material due to the frictional heating is worn off. Therefore to predict the speed of temperature propagation into the body is essential to the analysis of heat transfer on the edge of the seal.

  • PDF