ANALYSIS OF WAVE VELOCITY FOR TEMPERATURE PROPERGATION
IN A MECHANICAL FACE SEAL
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1. Introduction

A mechanical face seal is most commonly used to seal liquids and
gases at various speeds, pressures and temperatures. The primary seal
ring is in sliding contact with the seal seat and as a2 result heat in
the vicinity of the interface is generated.

Local temperatures at points along the circumferential direction
will fluctuate as asperities on the surfaces pass. This kind of
fluctuation of temperature has been investigated to take place [1,2].
This may lead to the hot spots phenomenon between the contacting
asperities. Sibley and Allen [3] showed photographic evidence of
systemically moving hot spots in the contact zone. The appearance of
such a temperature disturbance has been attributed to a kind of
thermoelastic instabilities [(4,5] between two surfaces: This involves
a feedback loop which comprises localized elevation of frictional
heating, resultant localized thermal bulding, localized pressure
increase as the result of the bulging and futher elevation of
frictional heating as the result of the pressure increase. The
heating of hot spots will be continued until the expanded material
due to the frictional heating is worn off. Therefore to predict the
speed of temperature propagation into the body is essentiél to the
enalysis of heat transfer on the edge of the seal.

In order to predict the wave velocity in the body, classical
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equation of heat flow has been applied to a seal-like configuration
with one face having a sinusoidally varying temperature distribution.
This analytical method may be very useful to explain the

thermoelastic instability phenomenon in the sliding contact.

2. Analysis

A thermally conductive plate slides on a thermal insulator. The
conductor moves against a stationed insulator at velocity U along the
x axis. The problem of a semi~infinite blade geometry is shown in
Fig. 1.

We assume that the heat generated by viscous friction between
the parallel plates is transferred into the solid. The face geometry
with a sinusoidal waviness will cause the non-uniform heating. This
may be led to the thermoelastic deformation in the interface. A
problem on the conduction of heat of non-steady state and moving
temperature disturbance will be considered.

To simplify the equation of heat flow, we assume the width z of
the blade to be small. It is assumed that the thermal diffusivity, o,
within the metal does not- vary with temperature. The governing

differential equation can then be written
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T(x,0,1)
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Fig. 1 Semi-infinite blade with a sine variation

in the surface temperature
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where T is the temperature distribution in the Body and t is time.
Eq. (1) may be solved using the following boundary conditions. The

temperature variations relative to the fixed surface are assumed as

follow:

| Ti | et sin{x{x - (c + U)t}] (2a)
(2b)

T(x,0,t)

T(x,y,t) = 0 as y ~ @

where ITil is constant amplitude of temperature, g represents the
exponent of growth of temperture wave, ¢ denotes the traversal

velocity of temperature wave, and X is the wave number defined as
X = 2a/A (3)

where A is a wavelength.

The corresponding S problem is defined by

3 1 oS
S (4)

with the boundary conditions

S(x,0,t) = | T; | eflcos{x{x - (c + U)t}] (5a)
(5b)

S(x,y,t) = 0 as y - @
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If we introduce the complex combination % =S + i-T, it is
constructed by multiplying Eq. (1) to Eq.(2b) by i and adding them to
Eq. (4) to Egq.(5b), respectively. The modified equation for T is then

given by
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with the boundary conditions

T(x,0,t) = | T, |1l = [x(c + 1) + ig]t) ey

0 asy-® (7b)

T(x,y,t)

The solution form of the modified equation (6) may be written as

T - Y(y)ei{xx - [K(C + U) + iﬁ]t} (8)
where the function Y(y) is determined so that the heat transfer
equation (6) and its boundary conditions (7a,b) must be satisfied.
Substituting Eq. (8) into Eq.(8) gives

[x(c + U) + ip)

Y o+ Y =0 (9)

«
mn

Substituting Eq.(8) into the boundary conditions (7a,b) yields

Y(0) = |T. | ' (10a)

Y(y) = O Yy - (10b)
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Therefore the ordinary diferential equation (9) can be solved as

Wity
e + B

1 2

-iJi¢ y
e

Y =B (11)
where

¢ (12)

Consider the complex relationship for Eq. (11) and substitute it into

Eq.(8). Then

~ ‘,i y + i{ xx — [x(c + U) + i8]t + 'i y}
T:Bez 2
1
£ + i _ . 3
y i4xx [x(c + U) + i)t E y

+ Be V2

2 (13)

Using the first boundary condition (7a), the unknown coefficient B1
of Eq.(13) is obtained as, B1 = ITiI. Since The temperature
disturbance should be finite as y becomes infinite, B2 is zero. Thus,
the solution of Eq.(6) becomes

~

T = |T. e (@tP)y + 8t {cos[x(x - (c +U)t) + (a - b)y]

i
+ 1 sin{x(x - (¢ + U)t) + (a - b)Y]} (14)
where
a = d
: bam (15a)
—x x(c 2 211/2 1/
. (c +U) + [x¥c + U2+ g7} J (15b)
4am
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The negative case of Eq. (15b) will be discarded because the temperat-
ure should be bounded as y goes to infinite. Since % =S5 + i-T, the

solution of the temperature perturbation in the body may be found
_ —(a+b)y+pt _.
T =| T, | e sin{x[x —(c + U)t] + (a - b)y} (16)

The temperature fluctuations due to the frictional heating on the
edge of the body are propagate into the body with the wave velocity c

given by [6]
c = {2aplx(c + U))}1/2 (17)

We may consider limiting case; non-moving plate, i.e., U = 0. The
temperature wave can propagate into the solid even though the body
does not move. Thus we have to discard the negative case. The wave

equation of Eq.(17) may be rearranged as

2na AU 1/2
c = m[1+ [1+ J ] (18)

A X
m

This equation indicates an importance of the wavelength to the wave

velocity into the body.

3. Conclusion

Fig.2 shows the distributions of wave velocity c wiﬁh the
sliding velocity U of the conductor. Curves are plotted for various
values of the wavelength. As the sliding speed increases, the

distribution of the wave velocity increases with approximately half
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of a parabolic shape. At low value of the wavelength, the wave
velocity is much higher than the long wavelength.

Equation (18) serves to provide the estimate of the wave
velocity into the body as a function of material property, wavelength
and speed of the blade. The wavelength of temperature disturbance
appears to be an important factor to predict the wave velocity yhen
the heat transfers to the body. The wave velocity expressions (18)
may be essential to understand the thermoelastic instability

phenomenon in frictionally heated contact.

1.0

Wave velocity, ¢ (m/sec)

Sliding velocity, U (m/sec)

Fig. 2 Relationship between the wave velocity and the sliding
speed of body with various values of the wavelength.
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