• 제목/요약/키워드: pressure tube

검색결과 2,124건 처리시간 0.027초

원통다관식 열교환기의 쉘측 압력 손실의 연구 (Investigation of Pressure drop on shell side of shell and tube heat exchanger)

  • 이용범;한성건;고재명
    • 동력기계공학회지
    • /
    • 제12권3호
    • /
    • pp.32-37
    • /
    • 2008
  • The present work aims to determine the overall pressure losses in the shell from the point of entry of the fluid to the outlet point of fluid of shell and tube heat exchanger. The main contribution of the present work is concerned with calculating the pressure drop in the interior section and window section. Shell-side flow velocity distributions have been evaluated. We assume that the shell-side fluid is turbulent. The calculation procedure is based upon the Delaware method. Evaluation of pressure drop on the shell side will be helpful for a designer or manufacturer of a heat exchanger.

  • PDF

균일하게 가열되는 수평전열관내 냉매의 유동 비등열 전달과 압력 강하 특성에 관한 연구 (A Study on Heat Transfer and Pressure Drop in Flow Boiling of Binary Mixtures in a Uniformly Heated Horizontal Tube)

  • 임태우;박종운;김준효
    • 수산해양교육연구
    • /
    • 제14권2호
    • /
    • pp.177-190
    • /
    • 2002
  • An experimental study was carried out to make clear heat transfer characteristics in flow boiling of binary mixtures of refrigerants R134a and R123 in a uniformly heated horizontal tube. Experiments were run at a pressure of 0.6 MPa both for pure fluids and mixtures in the ranges of heat flux $10{\sim}50{kW/m}^2$, vapor quality 0~100% and mass flux 150-600 $kg/m^2s$. Heat transfer coefficients of mixtures were reduced compared to the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Total pressure drop during two-phase flow boiling in a horizontal tube consists of the sum of two components, that is, the frictional pressure drop and pressure drop due to acceleration. The frictional pressure drop is the most difficult component to predict, and makes the most important contribution to the total pressure drop. On the other hand, the acceleration pressure drop resulting from the variation of the momentum flux caused by phase change is generally small as compared to the frictional pressure drop. There is no significant difference in measured pressure drop between mixtures and pure fluids. The correlation of Martinelli and Nelson predicted most of the present data both for pure and mixed refrigerants within 30%.

1 튜브 2 챔버 Bent Silkworm형 염색기의 구동특성 (Driving Characteristics of a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine)

  • 이춘길;성우경;이광수
    • 한국염색가공학회지
    • /
    • 제11권2호
    • /
    • pp.64-74
    • /
    • 1999
  • The driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are reported. This dyeing machine is a newly developed energy saving machine. In this study, the driving characteristics of the 1 tube 2 chamber bent silkworm type dyeing machine are examined. Specially the relationship between main body pressure and the electric current of the blower motor, the relationship between main body pressure and the air pressure of the blower nozzle, the effect of the air pressure of the blower on the running speed of the fabric, and the effect of main body temperature were discussed experimentally. Through the experimental data, the following results were obtained. 1. Blower motor electric current and blower nozzle air pressure increased as main body pressure increased due to the temperature increase of the main body. 2. The running speed of the fabric increased as blower nozzle air pressure increased. The difference in running speed between winch reel driving and no winch reel driving at a blower frequency of 60Hz was higher than that of 70Hz. 3. The electric current of the blower rioter and blower nozzle air pressure increased rapidly at the initial state. As the experimental time passed, the main body pressure increased slowly. as the main body temperature increased.

  • PDF

노통연관식 보일러의 압궤사고 방지대책 (Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler)

  • 이근호
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

급축소관을 전파하는 압축파에 관한 실험적 연구 (Experimental study on compression wave propagating in a sudden reduction duct)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구 (Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes)

  • 노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

유전자 알고리즘을 이용한 CANDU 압력관의 확률론적 손상역학 평가 (Probabilistic Damage Mechanics Assessment of CANDU Pressure Tube using Genetic Algorithm)

  • 고한옥;장윤석;최재붕;김영진;김홍기;최영환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.192-192
    • /
    • 2008
  • As the lifetime of nuclear power plants (NPPs) reaches design life, the probability for fatal accidents increases. Most of accidents are known to be caused by degradation of mechanical components. Pressure tubes are the most important components in CANDU reactor. They are subjected to various aging mechanisms such as delayed hydride cracking (DHC), irradiation and corrosion, etc. Therefore, the integrity of pressure tube is key concern in CANDU reactor. Up to recently, conventional deterministic approaches have been utilized to evaluate the integrity of components. However, there are many uncertainties to prevent a rational evaluation. The objective of this paper is to assess the failure probability of pressure tube in CANDU. To do this, probability fracture mechanics (PFM) analysis based on the Genetic Algorithm (GA) is performed. For the verification of the analysis, a comparison of the PFM analysis using a commercial code and mathematical method is carried out.

  • PDF

착상 시 공기 유속이 슬릿 핀-관 열교환기 서리층 생성에 미치는 영향에 관한 연구 (Effect of air velocity on frost formation of slit fin-and-tube heat exchanger under frosting condition)

  • 신성홍;조금남;하야세 가쿠
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.252-257
    • /
    • 2007
  • The present study investigated the effect of air velocity on frost formation of slit fin-and-tube heat exchanger under frosting condition. The slit fin-and-tube heat exchanger with outer tube diameter 7.0mm and 1 row was used. Air side pressure drop, photographs of frost distribution, frost accumulation and frost thickness were presented with respect to the frosting time. In the early stage of experiment, the case with air velocity of 1.5m/s showed 403% higher for the air pressure drop than the case with the air velocity of 0.5m/s. As the frost was accumulated, the effect of air velocity on air pressure drop was decreased. In the end stage of test, air pressure drops of two cases were very close and air pressure drop for the air velocity of 0.5m/s was higher than that of 2.0m/s. It was also shown in the photographs of frost distribution, frost accumulation and frost thickness. From frost thickness, fanning friction factor was presented.

  • PDF

Pressure drop characteristics of concentric spiral corrugation cryostats for a HTS power cable considering core surface roughness

  • Youngjun Choi;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권2호
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, interest in renewable energy such as solar and wind power has increased as an alternative to fossil fuels. Renewable energy sources such as large wind farms require long-distance power transmission because they are located inland or offshore, far from the city where power is required. High-Temperature Superconducting (HTS) power cables have more than 5 times the transmission capacity and less than one-tenth the transmission loss compared to the existing cables of the same size, enabling large-capacity transmission at low voltage. For commercialization of HTS power cables, unmanned operation and long-distance cooling technology of several kilometers is essential, and pressure drop characteristic is important. The cryostat's spiral corrugation tube is easier to bend, but unlike the round tube, the pressure drop cannot be calculated using the Moody chart. In addition, it is more difficult to predict the pressure drop characteristics due to the irregular surface roughness of the binder wound around the cable core. In this paper, a CFD model of a spiral corrugation tube with a core was designed by referring to the water experiments from previous studies. In the four cases geometry, when the surface roughness of the core was 10mm, most errors were 15% and the maximum errors were 23%. These results will be used as a reference for the design of long-distance HTS power cables.

유방 촬영검사에서 사전조사 관전압과 실제조사 관전압 편차에 따른 원인 분석 (Analysis of the cause by Pre Exposure Tube Voltage and Actual Exposure Tube Voltage deviation in Mammography Examination)

  • 조지환;이효영;임인철
    • 한국방사선학회논문지
    • /
    • 제11권2호
    • /
    • pp.79-85
    • /
    • 2017
  • 본 연구에서는 유방촬영검사에서 사전조사 관전압과 실제조사 관전압 편차에 따른 원인분석을 유방압박두께, 유방크기, 체질량지수와 연관하여 규명하고 개선책을 찾고자 하였다. 국민건강보험공단에서 실시하는 유방촬영 검진자 중 40세 이상 여자 377명을 대상으로 조사하였다. 유방촬영검사에서 상하방향촬영에 의한 영상을 참고하여 의료영상저장정보시스템으로 전송되어진 선량 보고서(dose report)의 파라메타 중 사전조사 관전압과 실제조사 관전압의 편차에 따른 유방압박두께, 유방크기, 체질량지수를 분석하였다. 결과로는 유방압박두께가 얇을수록, 유방크기가 작을수록, 체질량지수가 작을수록 관전압 편차가 크게 나타났다. 결론적으로 유방촬영검사에서 유방압박두께와 유방크기에 따른 관전압 설정을 하기 위해 우리나라 실정에 맞는 유방촬영기기의 최소 관전압이 재설정 되어야 할 것이며, 또한 유방압박두께가 얇은 환자나 유방크기가 작은 환자를 검사할 경우 정확한 조사조건 매뉴얼을 만들어 검사함으로서 촬영조건의 편차를 줄여 방사선피폭 경감과 좋은 영상의 화질을 만드는데 노력해야 할 것으로 사료된다.