• Title/Summary/Keyword: pressure chamber

Search Result 2,137, Processing Time 0.039 seconds

Neuroprotective Effects of Medicinal Herbs in Organotypic Hippocampal Slice Cultures (뇌해마의 장기양 조직배양을 이용한 한약물의 뇌신경세포손상 보호효능 연구)

  • Jung, Hyuk-Sang;Sohn, Nak-Won;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2004
  • Objectives : For the screening of neuroprotective effects of medicinal herbs, the complex system of animal models suffer some disadvantages in controlling critical parameters such as blood pressure and body temperature. Additionally, application of drugs to the appropriate brain area sometimes is difficult, due to poor permeability though the blood brain barrier, and so potential protective effects might be masked. Methods : Organotypic hippocampal slice culture (OHSC) method has the advantages of being relatively easy to prepare and of maintaining the general structure, including tissue integrity and the connections between cells. Drugs can easily be applied and neuronal damage can easily be quantified by using tissues and culture media. This study demonstrates neuroprotective effects of Puerariae radix (葛根, PR), Salviae miltiorrhizae radix (丹蔘, SR), Rhei rhizoma (大黃, RR), and Bupleuri radix (柴胡, BR). These were screenedand compared to MK-801, antagonist of NMDA receptors, by using OHSC of 1 week-old Sprague-Dawley rats. Oxygen/glucose deprivation (OGD) were conducted in an anaerobic chamber $(85%\;N_2,\;10%\;CO_2\;and\;5%\;H_2)$ in a deoxygenated glucose-free medium for 60 minutes. Water extracts of each herbs were treated to culture media with $5\;{\mu}g/ml$ for 48 hours. Results : Neuronal cell death in the cultures was monitored by densitometric measurements of the cellular uptake of propidium iodide (PI). PI fluorescence images were obtained at 48 hours after the OGD and medicinal herb treatment. Also TUNEL-positive cells in the CAI and DG regions and LDH concentrations in culture media were measured at 48 hours after the OGD. According to measured data, MK-801, PR, SR and BR demonstrated significant neuroprotective effect against excessive neuronal cell death and apoptosis induced by the OGD insult. Especially, PR revealed similar neuroprotective effect to MK-801 and RR demonstrated weak neuroprotective effect. Conclusions : These results suggest that OHSC can be a suitable method for screening of neuroprotective effects of medicinal herbs. (This work was supported by the research program of Dongguk University and Grant 01-PJ9-PG1-01CO03-0003 from Ministry of Health & Welfare.)

  • PDF

Reduction of gate leakage current for AlGaN/GaN HEMT by ${N_2}O$ plasma (${N_2}O$ 플라즈마에 의한 AlGaN/GaN HEMT의 누설전류 감소)

  • Yang, Jeon-Wook
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.152-157
    • /
    • 2007
  • AlGaN/GaN high electron mobility transistors (HEMTs) were fabricated and the effect of ${N_2}O$ plasma on the electrical characteristics of the devices was investigated. The HEMT exposed to ${N_2}O$ plasma formed by 40 W of RF power in a chamber with pressure of 20 mTorr at a temperature of $200^{\circ}C$, exhibited a reduction of gate leakage current from 246 nA to 1.2 pA by 10 seconds treatment. The current between the two isolated active regions reduced from 3 uA to 7 nA and the sheet resistance of the active layer was lowered also. The variations of electrical characteristics for HEMT were occurred within a short time expose of 10 seconds and the successive expose did not influence on the improvements of gate leakage characteristics and conductivity of the active region. The reduced leakage current level was not varied by successive $SiO_2$ deposition and its removal. The transconductnace and drain current of AlGaN/GaN HEMTs were increased also by the expose to the ${N_2}O$ plasma.

  • PDF

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

Synthesis of Nanostructured Si Coatings by Hybrid Plasma-Particle Accelerating Impact Deposition (HP-PAID) and their Characterization (하이브리드 플라즈마 입자가속 충격퇴적(Hybrid Plasma - Particle Accelerating Impact Deposition, HP-PAID) 프로세스에 의한 Si 나노구조 코팅층의 제조 및 특성평가)

  • 이형직;권혁병;정해경;장성식;윤상옥;이형복;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1202-1207
    • /
    • 2003
  • Using a recently developed Hybric Plasma-Particle Accelerating Impact Deposition (HP-PAID) process, synthesis of nanostructured silicon coatings has been investigated by injecting vapor-phase TEOS (tetraethosysilane, (C$_2$H$\_$5/O)$_4$Si) into an Ar hybrid plasma. The plasma jet with reactants was expanded through nozzle into a deposition chamber, with the pressure dropping from 700 to 10 torr. Ultrafine particles accelerated in the free jet downstream of the nozzle, deposited by an inertial impaction onto a temperature controlled substrate. By using this process, nanostructured amorphous silicon coatings with grain size smaller than 10 nm could be synthesized. These samples were annealed in an Ar and crystallized at 900$^{\circ}C$ for 30 min. TEM analysis showed that the annealed coatings were also composed of nanoparticles smaller than 10 nm, which showed a good consistency that the average grain size of 7 nm was also estimated from a peak shift of 2.39 cm$\^$-1/ and Full Width at Half Maximum (FWHM) 5.92 cm$\^$-1/ of Raman analysis. The noteworthy is that a strong PL peak at 398 nm was also obtained for this sample, which indicates that the deposited coatings also contained 3∼4 nm nanostructured grains.

Infiltration behavior and face stability of carbonate-added slurry shield tunnel (탄산을 첨가한 슬러리 쉴드 터널에서의 침투 거동 및 굴진면 안정성 평가)

  • Lee, Ik-Bum;Choi, Ki-Hoon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.401-413
    • /
    • 2013
  • Slurry shield tunnelling ensures stability by pressurizing the tunnel face with the slurry contained in the chamber. It resists water and earth pressure in order to prevent the failure in the tunnel face during tunnel excavation. If the ground is relatively coarse, slurry can not clog the tunnel face and excessive slurry infiltration will occur. In this case chemical compounds or additives should be added to the slurry in order to improve the clogging phenomena at the tunnel face. In this study, the effect of the carbon dioxide gas as an additive to the slurry instead of chemical compounds on the capability of enhancing the clogging in the tunnel face is investigated. Bubbles arising from the carbonate-added slurry are trapped in the soil voids enhancing the clogging capability. This effect is studied in this paper by performing laboratory model tests simulating in-situ conditions, and by adopting the fine particle clogging theory. Tunnel face stability analysis was also performed and it was found that the effective size ($D_{10}$) of soils which can guarantee tunnel stability utilizing the carbonate-added slurry increased from 1.0 mm up to 2.6 mm. Moreover, Stability analysis showed that the tunnel face is stable if the ${\lambda}$(deposition coefficient) value is greater than $0.007sec^{-1}$.

Clinical Experiences of Trabeculectomy with Mitomycin C (Mitomycin C를 사용한 섬유주절제술의 임상경험)

  • Cha, Soon-Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.1
    • /
    • pp.55-62
    • /
    • 1994
  • The use of intraoperative application of Mitomycin C at the filtration site has been known to improve the surgical outcome in glaucomatous eyes with high risk for failure of trabeculectomy. The author performed trabeculectomies with intraoperative Mitomycin C on 25 eyes of 20 patients with poor surgical prognosis to study the efficacy and safety of this technique in glaucomatous patients with high risk for failure of trabeculectomy. After the preparation of a scleral flap, 0.2mg/ml solution of Mitomycin C was applied between Tenon's capsule and the sclera for 2 minutes. The exposed area was then irrigated with 200 ml of balanced salt solution. The follow-up period was from 1 to 7 months (mean 3.8 months). The mean preoperative intraocular pressure (IOP) was $38.6{\pm}6.6mmHg$. The mean final postoperative IOP was $11.7{\pm}3.8mmHg$. Twenty three (88%) of the 25 eyes were successfully controlled with the IOP of less than or equal to 20 mmHg without glaucoma medication. There were early postoperative complications of hyphema in 5 eyes (20%), shallow anterior chamber in 4 eyes(16%), punctate keratopathy in 3 eyes (12%), aqueous leaking from conjunctival wound in 2 eyes (8%), encapsulated bleb in 1 eye (4%) and choroidal detachment in 1 eye (4%), and 4 eyes had long term hypotony lasting more than 2 months. Although Mitomycin C is simple to use and effective adjunct to trabeculectomy, further study will be needed to determine the mechanism of action, indication, dosage and optimal exposure time of Mitomycin C.

  • PDF

A Study on the Annealing Effect of SnO Nanostructures with High Surface Area (높은 표면적을 갖는 SnO 나노구조물의 열처리 효과에 관한 연구)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.536-542
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is a well-known n-type semiconductor that shows change in resistance in the presence of gas molecules, such as $H_2$, CO, and $CO_2$. Considerable research has been done on $SnO_2$ semiconductors for gas sensor applications due to their noble property. The nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in the sensing of gas molecules. In this study, SnO nanoplatelets were grown densely on Si substrates using a thermal CVD process. The SnO nanostructures grown by the vapor transport method were post annealed to a $SnO_2$ phase by thermal CVD in an oxygen atmosphere at $830^{\circ}C$ and $1030^{\circ}C$. The pressure of the furnace chamber was maintained at 4.2 Torr. The crystallographic properties of the post-annealed SnO nanostructures were investigated by Raman spectroscopy and XRD. The change in morphology was confirmed by scanning electron microscopy. As a result, the SnO nanostructures were transformed to a $SnO_2$ phase by a post-annealing process.

Study for Conductive and Non-conductive Multi-layers Depth Profiling Analysis of Radio Frequency Gas-jet Boosted Glow Discharge Spectrometry (Modified Gas-jet Boosted Radio-frequency Glow Discharge 셀의 개발 및 최적화에 관한 연구)

  • Cho, Won Bo;Borden, Stuart;Jeong, Jong Pil;Kang, Won Kyu;Kim, Kyu Whan;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • The new system using a glow discharge atomic emission spectrometer for the direct analysis of solid samples has been developed and characterized. The system was consisted of new glow discharge cell improved previous gas-jet boosted nozzle and radio-frequency power supply. In the case of previous type glow discharge chamber, it had been fitted trace analysis of low alloy steel with low discharge power, because it was to decrease redeposition and increase sample weight loss. But it had a problem that plasma becomes unstale due to increased sample weight loss and redeposition resulting from the high discharge power. Because of being problem of previous glow discharge, it is impossible to analyze using high power. The modified gas-jet boosted glow discharge to solve this problem would improve to be less sample loss rate of modified nozzle than sample loss rate of previous nozzle on the equal discharge condition, and improve to increase stability of plasma. The effect of discharge parameters such as discharge pressure, gas flow rate and power on the sample loss rate, emission intensity has been studied to find optimum discharge conditions. The calibration curves of Fe were obtained with 3 low-alloy samples.

X-ray properties measurement of Flat panel Digital X-ray gas detector (평판형 디지털 엑스레이 가스 검출기의 엑스선 특성 측정기술에 관한 연구)

  • Yoon, Min-Seok;Cho, Sung-Ho;Oh, Kyung-Min;Jung, Suk-Hee;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The Recently, large area matrix-addressed image detectors are investigated for X-ray imaging with medical diagnostic and other applications. In this paper, a new flat panel gas detector for diagnostic X-ray imaging is proposed, and its characteristics are investigated. The research of flat panel gas detector is not exist at all. Because of difficulty to inject gas against to atmospheric pressure. So almost gas detector made by chamber shape. We made flat panel sample by display technique. (ex: PDP, Fed, etc.) The experimental measurements, the transparent electrodes, dielectric layer, and the MgO protection layer were formed in front glass. And, the X-ray phosphor layer and address electrodes are formed in the rare glass. The dark current, the x-ray sensitivity and linearity as a function of electric field were measured to investigate the electrical properties. From the results, the stabilized dark current density and the significant x-ray sensitivity were obtained. And the good linearity as a function of exposure dose was showed in wide diagnostic energy range. These results means that the passive matrix-addressed flat panel gas detector can be used for digital x-ray imaging.

  • PDF

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF