• Title/Summary/Keyword: preorder

Search Result 22, Processing Time 0.03 seconds

Intuitionistic Fuzzy Topology and Intuitionistic Fuzzy Preorder

  • Yun, Sang Min;Lee, Seok Jong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.79-86
    • /
    • 2015
  • This paper is devoted to finding relationship between intuitionistic fuzzy preorders and intuitionistic fuzzy topologies. For any intuitionistic fuzzy preordered space, an intuitionistic fuzzy topology will be constructed. Conversely, for any intuitionistic fuzzy topological space, we obtain an intuitionistic fuzzy preorder on the set. Moreover, we will show that the family of all intuitionistic fuzzy preorders on an underlying set has a very close link to the family of all intuitionistic fuzzy topologies on the set satisfying some extra condition.

FIXED POINT PROPERTY AND COMPLETENESS OF ORDERED SETS

  • Kang, Byung-Gai
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • In this paper, we characterize the existence of fixed points of a multivalued function by the existence of complete preorder on the given domain. Also we investigate relations between the completeness of a given order and the fixed point property of some multivalued functions.

  • PDF

Order Structures of Compactifications in L-fuzzy Topological Spaces

  • Liu, Yingming;Luo, Maokang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.3-16
    • /
    • 1992
  • In this paper, we establish the conceptes of compactifications of a L-fuzzy topological space and a order relation in these compactifications. This order is a preorder. The existemce problem and the uniqueness problem of the largest compactifications are closely related to the mapping extension problem. We give out the largest compactifications and show the non-uniqueness of the largest compactifications in the preorder for a kind of spaces. Moreover, under some natural assumptions of separation axioms, we prove that the preorder is just a partial order, thus it ensures the uniqueness of the largest compactification. In addition. the related discussion involves the special properties of fuzzy product space, the latter seems to be independent interesting.

  • PDF

Complete Preordering of Alternatives by Metric Distance Meausre (거리측정척도에 의한 대안들의 전체적 유사순서 결정)

  • 김영겸;이강인;김진용;이진규
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.41-52
    • /
    • 1994
  • Imprecision of evaluation or lack of prior information about preference can be an obstacle for decision maker in representing his strict preference. Therefore, fuzziness of preference can take place, and in addition, intransitivity or incomparability of preference becomes the critical difficulty in making complete preorder of alternatives. In order to get better solution and to improve practical usufulness, MCDM should be established as a pseudo-criterion model that include fuzzy preference. In this paper, we suggest a pseudo-criterion model that can make complete preorder of alternatives by metric distance measure.

  • PDF

Compact Complementary Quadtree for Binary Images (이진 영상을 위한 Compact Complementary Quadtree의 구성)

  • Jo, Yeong-U;Kim, Yeong-Mo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.209-214
    • /
    • 1997
  • In this paper, we propose a new preorder tree method for binary images, named the Compact Complementary Quadtree (CCQ). In the proposed method we use type codes for representing nodes in the quadtree instead of using the symbols G, B, and W. From the experimental results, we have confirmed that the CCQ has a higher compression ratio than of the DF-expression. CCQ can be effectively applied to progressive transmission of binary images such as line drawings, geographical maps, and halftones.

  • PDF

Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets (르장드르 웨이블릿을 이용한 쌍일차 시스템 수치 해석)

  • Kim, Beomsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.827-833
    • /
    • 2013
  • In this paper, an efficient computational method is presented for state space analysis of bilinear systems via Legendre wavelets. The differential matrix equation is converted to a generalized Sylvester matrix equation by using Legendre wavelets as a basis. First, an explicit expression for the inverse of the integral operational matrix of the Legendre wavelets is presented. Then using it, we propose a preorder traversal algorithm to solve the generalized Sylvester matrix equation, which greatly reduces the computation time. Finally the efficiency of the proposed method is discussed using numerical examples.

H-FUZZY SEMITOPOGENOUS PREOFDERED SPACES

  • Chung, S.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.687-700
    • /
    • 1994
  • Throughout this paper we will let H denote the complete Heyting algebra ($H, \vee, \wedge, *$) with order reversing involution *. 0 and 1 denote the supermum and the infimum of $\emptyset$, respectively. Given any set X, any element of $H^X$ is called H-fuzzy set (or, simply f.set) in X and will be denoted by small Greek letters, such as $\mu, \nu, \rho, \sigma$. $H^X$ inherits a structure of H with order reversing involution in natural way, by definding $\vee, \wedge, *$ pointwise (sam notations of H are usual). If $f$ is a map from a set X to a set Y and $\mu \in H^Y$, then $f^{-1}(\mu)$ is the f.set in X defined by f^{-1}(\mu)(x) = \mu(f(x))$. Also for $\sigma \in H^X, f(\sigma)$ is the f.set in Y defined by $f(\sigma)(y) = sup{\sigma(x) : f(x) = y}$ ([4]). A preorder R on a set X is reflexive and transitive relation on X, the pair (X,R) is called preordered set. A map $f$ from a preordered set (X, R) to another one (Y,T) is said to be preorder preserving (inverting) if for $x,y \in X, xRy$ implies $f(x)T f(y) (resp. f(y)Tf(x))$. For the terminology and notation, we refer to [10, 11, 13] for category theory and [7] for H-fuzzy semitopogenous spaces.

  • PDF