FUZZY RELATIONS AND ALEXANDROV L-TOPOLOGIES

Jung Mi Ko ${ }^{\text {a }}$ and Yong Chan Kim ${ }^{\text {b,* }}$

Abstract

In this paper, we investigate the relationships between fuzzy relations and Alexandrov L-topologies in complete residuated lattices. Moreover, we give their examples.

1. Introduction

Pawlak $[9,10]$ introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Hájek [3] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Radzikowska [11] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Lai $[7,8]$ introduced Alexandrov L-topologies induced by fuzzy rough sets. Algebraic structures of fuzzy rough sets are developed in many directions [1-13].

In this paper, we investigate the relationships between fuzzy relations and Alexandrov L-topologies in complete residuated lattices. Moreover, we give their examples.

2. Preliminaries

Definition $2.1([1,3])$. An algebra $(L, \wedge, \vee, \odot, \rightarrow, \perp, T)$ is called a complete residuated lattice if it satisfies the following conditions:
(L1) $L=(L, \leq, \vee, \wedge, \perp, \top)$ is a complete lattice with the greatest element T and the least element \perp;
(L2) (L, \odot, T) is a commutative monoid;
(L3) $x \odot y \leq z$ iff $x \leq y \rightarrow z$ for $x, y, z \in L$.

[^0]In this paper, we assume $\left(L, \wedge, \vee, \odot, \rightarrow,{ }^{*} \perp, \top\right)$ is a complete residuated lattice with the law of negation;i.e. $x^{* *}=x$. For $\alpha \in L, A, \top_{x} \in L^{X},(\alpha \rightarrow A)(x)=\alpha \rightarrow$ $A(x), \quad(\alpha \odot A)(x)=\alpha \odot A(x)$ and $\top_{x}(x)=\top, \top_{x}(x)=\perp$, otherwise.

Definition $2.2([1,7])$. Let X be a set. A function $R: X \times X \rightarrow L$ is called a fuzzy relation. A fuzzy relation R is called a fuzzy preorder if satisfies (R1) and (R2).
(R1) reflexive if $R(x, x)=\top$ for all $x \in X$,
(R2) transitive if $R(x, y) \odot R(y, z) \leq R(x, z)$, for all $x, y, z \in X$.
We denote $R^{2}(x, z)=(R \circ R)(x, z)=\bigvee_{y \in X}(R(x, y) \odot R(y, z))$.
Lemma $2.3([1,3]) . \operatorname{Let}\left(L, \vee, \wedge, \odot, \rightarrow,{ }^{*}, \perp, \top\right)$ be a complete residuated lattice with a negation *. For each $x, y, z, x_{i}, y_{i} \in L$, the following properties hold.
(1) If $y \leq z$, then $x \odot y \leq x \odot z$.
(2) If $y \leq z$, then $x \rightarrow y \leq x \rightarrow z$ and $z \rightarrow x \leq y \rightarrow x$.
(3) $x \odot\left(\bigvee_{i \in \Gamma} y_{i}\right)=\bigvee_{i \in \Gamma}\left(x \odot y_{i}\right)$ and $\left(\bigvee_{i \in \Gamma} x_{i}\right) \odot y=\bigvee_{i \in \Gamma}\left(x_{i} \odot y\right)$.
(4) $x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right)=\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right)$ and $\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right)$.
(5) $(x \rightarrow y) \odot x \leq y$ and $(y \rightarrow z) \odot(x \rightarrow y) \leq(x \rightarrow z)$.
(6) $(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$ and $(x \odot y)^{*}=x \rightarrow y^{*}$.
(7) $x^{*} \rightarrow y^{*}=y \rightarrow x$ and $(x \rightarrow y)^{*}=x \odot y^{*}$.

Definition 2.4 ([5-7]). A subset $\tau \subset L^{X}$ is called an Alexandrov topology if it satisfies satisfies the following conditions.
(T1) $\perp_{X}, \top_{X} \in \tau$ where $\top_{X}(x)=\top$ and $\perp_{X}(x)=\perp$ for $x \in X$.
(T2) If $A_{i} \in \tau$ for $i \in \Gamma, \bigvee_{i \in \Gamma} A_{i}, \bigwedge_{i \in \Gamma} A_{i} \in \tau$.
(T3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
(T4) $\alpha \rightarrow A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
Definition $2.5([7])$. Let $R \in L^{X \times X}$ be a fuzzy relation. A set $A \in L^{X}$ is called extensional if $A(x) \odot R(x, y) \leq A(y)$ for all $x, y \in X$.

3. Fuzzy Relations and Alexandrov L-Topologies

Theorem 3.1. Let $R \in L^{X \times X}$ and $R^{-1} \in L^{X \times X}$ with $R^{-1}(x, y)=R(x, y)$.
(1) τ is an Alexandrov topology on X iff $\tau^{*}=\left\{A^{*} \in L^{X} \mid A \in \tau\right\}$ is an Alexandrov topology on X.
(2) $\tau_{R}=\left\{A \in L^{X} \mid A(x) \odot R(x, y) \leq A(y), x, y \in X\right\}$ is an Alexandrov topology on X. Moreover, $\tau_{R^{-1}}=\left\{A^{*} \mid A \in \tau_{R}\right\}=\tau_{R}^{*}$.
(3) If \bar{R} is the smallest fuzzy preorder such that $R \leq \bar{R}$, then

$$
\bar{R}(x, y)=\bigwedge_{A \in \tau_{R}}(A(x) \rightarrow A(y))=\bigvee_{n \in N}\left(R^{r}\right)^{n}(x, y)
$$

where $R^{r}(x, y)=\triangle \vee R(x, y)$ and $\triangle(x, y)=\top$ if $x=y$ and $\triangle(x, y)=\perp$ if $x \neq y$. Moreover,

$$
\bar{R}^{-1}(x, y)=\bigwedge_{A \in \tau_{R}^{*}}(A(x) \rightarrow A(y))=\overline{R^{-1}}(x, y)
$$

(4) $\tau_{R}=\left\{A \in L^{X} \mid \bigvee_{x \in X}(A(x) \odot \bar{R}(x,-))=A\right\}=\left\{\bigvee_{x \in X}\left(a_{x} \odot \bar{R}(x,-)\right\}\right.$ where $\bar{R}(x,-)(y)=\bar{R}(x, y)$ for each $y \in X$.
(5) $\tau_{R}=\left\{A \in L^{X} \mid A=\bigwedge_{y \in X}(\bar{R}(-, y) \rightarrow A(y))\right\}=\left\{\bigwedge_{y \in X}\left(\bar{R}(-, y) \rightarrow b_{y}\right)\right\}$ where $\bar{R}(-, y)(x)=\bar{R}(x, y)$ for each $x \in X$.
(6) $\tau_{R}^{*}=\left\{A \in L^{X} \mid \bigvee_{x \in X}(A(x) \odot \bar{R}(-, x))=A\right\}=\left\{\bigvee_{x \in X}\left(a_{x} \odot \bar{R}(-, x)\right\}\right.$ where $\bar{R}(-, x)(y)=\bar{R}(y, x)$ for each $y \in X$.
(7) $\tau_{R}^{*}=\left\{A \in L^{X} \mid A=\bigwedge_{y \in X}(\bar{R}(y,-) \rightarrow A(y))\right\}=\left\{\bigwedge_{y \in X}\left(\bar{R}(y,-) \rightarrow b_{y}\right)\right\}$ where $\bar{R}(y,-)(x)=\bar{R}(y, x)$ for each $x \in X$.
(8) $C_{\tau_{R}}(A)=\bigwedge\left\{B \in L^{X} \mid A \leq B, B \in \tau_{R}\right\}=\bigvee_{x \in X}(A(x) \odot \bar{R}(x,-))$. Moreover, $C_{\tau_{R}}(A) \in \tau_{R}$.
(9) $I_{\tau_{R}}(A)=\bigvee\left\{B \in L^{X} \mid B \leq A, B \in \tau_{R}\right\}=\bigwedge_{x \in X}(\bar{R}(-, x) \rightarrow A(x))$. Moreover, $I_{\tau_{R}}(A) \in \tau_{R}$.
(10) $A \in \tau_{R}$ iff $A=C_{\tau_{R}}(A)=I_{\tau_{R}}(A)$.
(11) $C_{\tau_{R}}(A)=\left(I_{\tau_{R^{-1}}}\left(A^{*}\right)\right)^{*}$ for all $A \in L^{X}$.

Proof. (1) Let $A^{*} \in \tau^{*}$ for $A \in \tau$. Since $\alpha \odot A^{*}=(\alpha \rightarrow A)^{*}$ and $\alpha \rightarrow A^{*}=(\alpha \odot A)^{*}$, τ^{*} is an Alexandrov topology on X.
(2) (T1) Since $\top_{X}(x) \odot R(x, y) \leq \top_{X}(y)=\top$ and $\perp_{X}(x) \odot R(x, y)=\perp=\perp_{X}(y)$, Then $\perp_{X}, \top_{X} \in \tau_{R}$.
(T2) For $A_{i} \in \tau_{R}$ for each $i \in \Gamma$, since $\left(\bigvee_{i \in \Gamma} A_{i}(x)\right) \odot R(x, y)=\bigvee_{i \in \Gamma}\left(A_{i}(x) \odot\right.$ $R(x, y)) \leq \bigvee_{i \in \Gamma} A_{i}(y), \bigvee_{i \in \Gamma} A_{i} \in \tau_{R}$. Similarly, $\bigwedge_{i \in \Gamma} A_{i} \in \tau_{R}$.
(T3) For $A \in \tau_{R}, \alpha \odot A \in \tau_{R}$.
(T4) For $A \in \tau_{R}$, by Lemma 2.3(5), since $\alpha \odot(\alpha \rightarrow A(x)) \odot R(x, y) \leq A(x) \odot$ $R(x, y) \leq A(y),(\alpha \rightarrow A(x)) \odot R(x, y) \leq \alpha \rightarrow A(y)$. Then $\alpha \rightarrow A \in \tau_{R}$. Moreover $A \in \tau_{R}$ iff $A^{*} \in \tau_{R^{-1}}$ from:

$$
\begin{aligned}
& A(x) \odot R(x, y) \leq A(y) \text { iff } R(x, y) \rightarrow A^{*} \geq A^{*}(y) \\
& \text { iff } A^{*}(y) \odot R(x, y) \leq A^{*}(x) \text { iff } A^{*}(y) \odot R^{-1}(y, x) \leq A^{*}(x) .
\end{aligned}
$$

(3) Define $R_{\tau_{R}}(x, y)=\bigwedge_{B \in \tau_{R}}(B(x) \rightarrow B(y))$. Then $R_{\tau_{R}}$ is a fuzzy preorder. Since $B \in \tau_{R}$ and $B(x) \odot R(x, y) \leq B(y)$, then $R(x, y) \leq B(x) \rightarrow B(y)$. Hence
$R(x, y) \leq R_{\tau_{R}}$. If P is a fuzzy preorder with $R \leq P$, for $P_{w}(x)=P(w, x)$, then $P_{w}(x) \odot R(x, y) \leq P_{w}(x) \odot P(x, y) \leq P_{w}(y)$. Hence $P_{w} \in \tau_{R}$. Thus $R_{\tau_{R}}(x, y)=$ $\bigwedge_{B \in \tau_{R}}(B(x) \rightarrow B(y)) \leq P_{x}(x) \rightarrow P_{x}(y)=P(x, y)$. Thus,

$$
\bar{R}(x, y)=\bigwedge_{A \in \tau_{R}}(A(x) \rightarrow A(y))
$$

Since $R^{r}(x, y)=\triangle \vee R(x, y)$, we have $\left(R^{r}\right)^{n}(x, x)=\top$ for each $n \in N$. So $\bigvee_{n \in N}\left(R^{r}\right)^{n}(x, x)=\mathrm{T}$. Since

$$
\bigvee_{y \in X}\left(\left(R^{r}\right)^{k}(x, y) \odot\left(R^{r}\right)^{m}(y, z) \leq\left(R^{r}\right)^{k+m}(x, z) \leq \bigvee_{n \in N}\left(R^{r}\right)^{n}(x, z)\right.
$$

then $\bigvee_{n \in N}\left(R^{r}\right)^{n}(x, y) \circ \bigvee_{n \in N}\left(R^{r}\right)^{n}(y, z) \leq \bigvee_{n \in N}\left(R^{r}\right)^{n}(x, z)$. Hence $\bigvee_{n \in N}\left(R^{r}\right)^{n}$ is a fuzzy preorder. If $R \leq P$ and P is fuzzy preorder, then $R^{r} \leq P$ and $\left(R^{r}\right)^{n} \leq P^{n}=P$, thus, $\bigvee_{n \in N}\left(R^{r}\right)^{n} \leq P$. Hence $\bar{R}=\bigvee_{n \in N}\left(R^{r}\right)^{n}$.

$$
\begin{aligned}
& \quad \bar{R}^{-1}(x, y)=\bigwedge_{A \in \tau_{R}^{*}}(A(x) \rightarrow A(y))=\overline{R^{-1}}(x, y) . \\
& \bar{R}^{-1}(x, y)=\bar{R}(y, x)=\bigwedge_{A \in \tau_{R}}(A(y) \rightarrow A(x)) \\
& =\bigwedge_{A^{*} \in \tau_{R}^{*}}\left(A^{*}(x) \rightarrow A^{*}(y)\right)=\bigwedge_{A \in \tau_{R^{-1}}}(A(x) \rightarrow A(y)) \\
& =\overline{R^{-1}}(x, y) .
\end{aligned}
$$

(4) Put $\tau=\left\{A \in L^{X} \mid \bigvee_{x \in X}(A(x) \odot \bar{R}(x,-))=A\right\}$ and $\tau_{1}=\left\{\bigvee_{x \in X}\left(a_{x} \odot\right.\right.$ $\bar{R}(x,-))\}$. Since $A \in \tau_{R}, R_{\tau_{R}}(x, y) \odot A(x)=\bigwedge_{B \in \tau}(B(x) \rightarrow B(y)) \odot A(x) \leq$ $(A(x) \rightarrow A(y)) \odot A(x) \leq A(y)$. Hence $\bigvee_{x \in X}(A(x) \odot \bar{R}(x, y)) \leq A(y)$. Since $A(y)=$ $A(y) \odot \bar{R}(y, y) \leq \bigvee_{x \in X}(A(x) \odot \bar{R}(x, y)), \bigvee_{x \in X}(A(x) \odot \bar{R}(x, y))=A(y)$. Thus, $A \in \tau$.

Let $A \in \tau$. Since $R \leq \bar{R}, A(x) \odot R(x, y) \leq A(x) \odot \bar{R}(x, y)=A(y)$. Thus, $A \in \tau_{R}$.
Let $A \in \tau$. Then $\bigvee_{x \in X}(A(x) \odot \bar{R}(x, y))=A(y)$. Put $A(x)=a_{x}$. Then $\bigvee_{x \in X}\left(a_{x} \odot\right.$ $\bar{R}(x,-)) \in \tau_{1}$.

Let $D=\bigvee_{x \in X}\left(a_{x} \odot \bar{R}(x,-)\right) \in \tau_{1}$. Then

$$
\begin{aligned}
& \bigvee_{w \in X}(D(w) \odot \bar{R}(w, y)) \\
& =\bigvee_{w \in X}\left(\bigvee_{x \in X}(A(x) \odot \bar{R}(x, w)) \odot \bar{R}(w, y)\right) \\
& =\bigvee_{x \in X}\left(A(x) \odot \bigvee_{w \in X}(\bar{R}(x, w) \odot \bar{R}(w, y))\right) \\
& =\bigvee_{x \in X}(A(x) \odot \bar{R}(x, y))=D(y) .
\end{aligned}
$$

Thus, $D \in \tau$. Hence $\tau_{R}=\tau=\tau_{1}$.
(5) Put $\eta=\left\{A \in L^{X} \mid A=\bigwedge_{y \in X}(\bar{R}(-, y) \rightarrow A(y))\right\}$ and $\eta_{1}=\left\{\bigwedge_{y \in X}(\bar{R}(-, y) \rightarrow\right.$ $\left.\left.b_{y}\right)\right\}$. Since $A \in \tau_{R}, R_{\tau_{R}}(x, y) \rightarrow A(y)=\bigwedge_{B \in \tau}(B(x) \rightarrow B(y)) \rightarrow A(y) \geq(A(x) \rightarrow$ $A(y)) \rightarrow A(y) \geq A(x)$. Hence $A(x) \leq \bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow A(y))$. Since $A(y)=$
$\bar{R}(y, y) \rightarrow A(y) \geq \bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow A(y)), A(x)=\bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow A(y))$. Thus, $A \in \eta$.

Let $A \in \eta$. Since $R \leq \bar{R}, \bigwedge_{y \in X}(R(x, y) \rightarrow A(y)) \geq \bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow A(y))=$ $A(x)$. Thus, $R(x, y) \rightarrow A(y) \geq A(x)$ iff $A(x) \odot R(x, y) \leq A(y)$. So, $A \in \tau_{R}$.

Let $A \in \eta$. Then $A=\bigwedge_{y \in X}(\bar{R}(-, y) \rightarrow A(y))$. Put $A(y)=b_{y}$. Then $A=$ $\bigwedge_{y \in X}\left(\bar{R}(-, y) \rightarrow b_{y}\right) \in \eta_{1}$.

Let $A=\bigwedge_{y \in X}\left(\bar{R}(-, y) \rightarrow b_{y}\right) \in \eta_{1}$. Then

$$
\begin{aligned}
& \bigwedge_{w \in X}(\bar{R}(x, w) \rightarrow A(w)) \\
& =\bigwedge_{w \in X}\left(\bar{R}(x, w) \rightarrow \bigwedge_{y \in X}\left(\bar{R}(w, y) \rightarrow b_{y}\right)\right) \\
& =\bigwedge_{w \in X} \bigwedge_{y \in X}\left(\bar{R}(x, w) \rightarrow\left(\bar{R}(w, y) \rightarrow b_{y}\right)\right) \\
& =\bigwedge_{w \in X} \bigwedge_{y \in X}\left((\bar{R}(x, w) \odot \bar{R}(w, y)) \rightarrow b_{y}\right) \\
& =\bigwedge_{y \in X}\left(\bigvee_{w \in X}(\bar{R}(x, w) \odot \bar{R}(w, y)) \rightarrow b_{y}\right) \\
& =\bigwedge_{y \in X}\left(\bar{R}(x, y) \rightarrow b_{y}\right)=A(x) .
\end{aligned}
$$

Thus, $A \in \eta$. Hence $\tau_{R}=\eta=\eta_{1}$.
(6) It follows from $\bigvee_{x \in X}(A(x) \odot \bar{R}(-, x))=\bigvee_{x \in X}\left(A(x) \odot \bar{R}^{-1}(x,-)\right)=A$ iff $A \in \tau_{R^{-1}}=\tau_{R}^{*}$.
(7) It follows from $\bigwedge_{x \in X}(\bar{R}(x,-) \rightarrow A(x))=\bigwedge_{x \in X}\left(\bar{R}^{-1}(-, x) \rightarrow A(x)\right)=A$ iff $A \in \tau_{R^{-1}}=\tau_{R}^{*}$.
(8) Put $B=\bigvee_{x \in X}(A(x) \odot \bar{R}(x,-))$. Then $B \in \tau_{R}$ from:

$$
\begin{aligned}
& \bigvee_{w \in X}(B(w) \odot \bar{R}(w, y)) \\
& =\bigvee_{w \in X}\left(\bigvee_{x \in X}(A(x) \odot \bar{R}(x, w)) \odot \bar{R}(w, y)\right) \\
& =\bigvee_{x \in X}\left(A(x) \odot \bigvee_{w \in X}(\bar{R}(x, w) \odot \bar{R}(w, y))\right) \\
& =\bigvee_{x \in X}(A(x) \odot \bar{R}(x, y))=B(y) .
\end{aligned}
$$

If $A \leq E$ and $E \in \tau_{R}$, then $B \leq E$ from:

$$
B(y)=\bigvee_{x \in X}(A(x) \odot \bar{R}(x, y)) \leq \bigvee_{x \in X}(E(x) \odot \bar{R}(x, y))=E(y)
$$

Hence $C_{\tau_{R}}=B$.
(9) Let $B=\bigwedge_{y \in X}(\bar{R}(-, y) \rightarrow A(y)) \in \tau_{R}$ from

$$
\begin{aligned}
& \bigwedge_{w \in X}(\bar{R}(x, w) \rightarrow B(w)) \\
& =\bigwedge_{w \in X}\left(\bar{R}(x, w) \rightarrow \bigwedge_{y \in X}(\bar{R}(w, y) \rightarrow A(y))\right) \\
& =\bigwedge_{w \in X} \bigwedge_{y \in X}(\bar{R}(x, w) \rightarrow(\bar{R}(w, y) \rightarrow A(y))) \\
& =\bigwedge_{w \in X} \bigwedge_{y \in X}((\bar{R}(x, w) \odot \bar{R}(w, y)) \rightarrow A(y)) \\
& =\bigwedge_{y \in X}\left(\bigvee_{w \in X}(\bar{R}(x, w) \odot \bar{R}(w, y)) \rightarrow A(y)\right) \\
& =\bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow A(y))=B(x) .
\end{aligned}
$$

If $E \leq A$ and $E \in \tau_{R}$, then $E \leq B$ from:

$$
E(x)=\bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow E(y)) \leq \bigwedge_{y \in X}(\bar{R}(x, y) \rightarrow A(y))=B(x) .
$$

Hence $I_{\tau_{R}}=B$.
(11)

$$
\begin{aligned}
& C_{\tau_{R}}(A)=\bigwedge\left\{B \mid A \leq B, B \in \tau_{R_{X}}\right\} \\
&=\bigwedge\left\{B \mid B^{*} \leq A^{*}, B^{*} \in \tau_{R_{X}^{-1}}\right\} \\
&=\left(\bigvee\left\{B^{*} \mid B^{*} \leq A^{*}, B^{*} \in \tau_{R_{X}^{-1}}\right\}\right)^{*} \\
&=\left(I_{\tau_{R_{R}-1}}\left(A^{*}\right)\right)^{*} . \\
&\left(I_{\tau_{R}-1}\left(A^{*}\right)\right)^{*}=\left(\bigwedge_{x \in X}\left(\bar{R}(x,-) \rightarrow A^{*}(x)\right)\right)^{*} \\
&=\bigvee_{x \in X}(\bar{R}(x,-) \odot A(x))=C_{\tau_{R}}(A) .
\end{aligned}
$$

Theorem 3.2. Let R_{X} and R_{Y} be fuzzy relations and $f: X \rightarrow Y$ a map with $R_{X}(x, y) \leq R_{Y}(f(x), f(y))$ for all $x, y \in X$. Then the following equivalent conditions hold.
(1) $f^{-1}(B) \in \tau_{R_{X}}$ for all $B \in \tau_{R_{Y}}$.
(2) $f^{-1}(B) \in \tau_{R_{X}}^{*}$ for all $B \in \tau_{R_{Y}}^{*}$.
(3) $R_{\tau_{R_{X}}}(x, y) \leq R_{\tau_{R_{Y}}}(f(x), f(y))$ for all $x, y \in X$.
(4) $R_{\tau_{R_{X}}^{*}}(x, y)=R_{\tau_{R_{X}}}^{-1}(y, x) \leq R_{\tau_{R_{Y}}}^{-1}(f(y), f(x))=R_{\tau_{R_{Y}}^{*}}(f(x), f(y))$ for all $x, y \in X$.
(5) $f\left(C_{\tau_{R_{X}}}(A)\right) \leq C_{\tau_{R_{Y}}}(f(A))$ for all $A \in L^{X}$.
(6) $f\left(C_{\tau_{R_{X}^{-1}}}(A)\right) \leq C_{\tau_{R_{Y}^{-1}}}(f(A))$ for all $A \in L^{X}$.
(7) $C_{\tau_{R_{X}}}\left(f^{-1}(B)\right) \leq f^{-1}\left(C_{\tau_{R_{X}}}(B)\right)$ for all $B \in L^{Y}$.
(8) $C_{\tau_{R_{X}^{-1}}}\left(f^{-1}(B)\right) \leq f^{-1}\left(C_{\tau_{R_{Y}^{-1}}}(B)\right)$ for all $B \in L^{Y}$.
(9) $f^{-1}\left(I_{\tau_{R_{X}}}(B)\right) \leq I_{\tau_{R_{Y}}}\left(f^{-1}(B)\right)$ for all $B \in L^{Y}$.
(10) $f^{-1}\left(I_{\tau_{R_{Y}^{-1}}}(B)\right) \leq I_{\tau_{R_{X}^{-1}}^{-1}}^{-1}\left(f^{-1}(B)\right)$ for all $B \in L^{Y}$.

Proof. (1) For all $B \in \tau_{R_{Y}}, f^{-1}(B) \in \tau_{R_{X}}$ from:

$$
\begin{aligned}
f^{-1}(B)(x) \odot R_{X}(x, y) & \leq B(f(x)) \odot R_{Y}(f(x), f(y)) \\
& \leq B(f(y))=f^{-1}(B)(y) .
\end{aligned}
$$

$(1) \Leftrightarrow(2)$ It follows from (1) and Theorem 3.1(2).
$(1) \Rightarrow(3)$

$$
\begin{aligned}
R_{\tau_{R_{Y}}}(f(x), f(y)) & =\bigwedge_{B \in \tau_{R_{Y}}}(B(f(x)) \rightarrow B(f(y))) \\
& =\bigwedge_{B \in \tau_{R_{Y}}}\left(f^{-1}(B)(x) \rightarrow f^{-1}(B)(y)\right) \\
& \geq \bigwedge_{A \in \tau_{R_{X}}}(A(x) \rightarrow A(y))=R_{\tau_{R_{X}}}(x, y)
\end{aligned}
$$

$(1) \Rightarrow(5)$

$$
\begin{aligned}
C_{R_{Y}}(f(A)) & =\bigwedge\left\{B \mid f(A) \leq B, B \in \tau_{R_{Y}}\right\} \\
& \geq \bigwedge\left\{B \mid A \leq f^{-1}(B), f^{-1}(B) \in \tau_{R_{X}}\right\} \\
& \geq \bigwedge\left\{f\left(f^{-1}(B)\right) \mid A \leq f^{-1}(B), f^{-1}(B) \in \tau_{R_{X}}\right\} \\
& \geq f\left(\bigwedge\left\{f^{-1}(B) \mid A \leq f^{-1}(B), f^{-1}(B) \in \tau_{R_{X}}\right\}\right) \\
& \geq f\left(C_{R_{Y}}(A)\right) .
\end{aligned}
$$

$(3) \Rightarrow(5)$

$$
\begin{aligned}
C_{R_{Y}}(f(A))(f(x)) & =\bigvee_{w \in Y}\left(f(A)(w) \odot R_{Y}(w, f(x))\right) \\
& \geq \bigvee_{z \in X}\left(f(A)(f(z)) \odot R_{Y}(f(z), f(x))\right) \\
& \geq \bigvee_{z \in X}\left(A(z) \odot R_{X}(z, x)\right)=C_{R_{X}}(A)(x)
\end{aligned}
$$

$(5) \Rightarrow(7)$ By (5), put $A=f^{-1}(B)$. Since $f\left(C_{\tau_{R_{X}}}\left(f^{-1}(B)\right)\right) \leq C_{\tau_{R_{Y}}}\left(f\left(f^{-1}(B)\right)\right) \leq$ $C_{\tau_{R_{Y}}}(B)$, we have $C_{\tau_{R_{X}}}\left(f^{-1}(B)\right) \leq f^{-1}\left(C_{\tau_{R_{X}}}(B)\right)$.
$(7) \Rightarrow(1)$ For all $B \in \tau_{R_{Y}}, C_{\tau_{Y}}(B)=B$. Since $C_{\tau_{R_{X}}}\left(f^{-1}(B)\right) \leq f^{-1}\left(C_{\tau_{R_{X}}}(B)\right)=$ $f^{-1}(B), f^{-1}(B) \in \tau_{R_{X}}$.
$(1) \Rightarrow(9)$

$$
\begin{aligned}
& f^{-1}\left(I_{R_{Y}}(B)\right)(x)=I_{R_{Y}}(B)(f(x) \\
&=\bigvee\left\{D(f(x)) \mid D \leq B, D \in \tau_{R_{Y}}\right\} \\
&=\bigvee\left\{f^{-1}(D)(x) \mid f^{-1}(D) \leq f^{-1}(B), f^{-1}(D) \in \tau_{R_{X}}\right\} \\
& \leq \bigvee\left\{E(x) \mid E \leq f^{-1}(B), E \in \tau_{R_{X}}\right\} \\
&=I_{R_{X}}\left(f^{-1}(B)\right) . \\
& f^{-1}\left(I_{R_{Y}}(B)\right)(x)=I_{R_{Y}}(B)(f(x)) \\
&=\bigwedge_{w \in Y}\left(R_{Y}(f(x), w) \rightarrow B(w)\right) \\
& \leq \bigwedge_{z \in X}\left(R_{Y}(f(x), f(z)) \rightarrow B(f(z))\right) \\
& \leq \bigwedge_{z \in X}\left(R_{X}(x, z) \rightarrow f^{-1}(B)(z)\right) \\
&=I_{R_{X}}\left(f^{-1}(B)\right)(x)
\end{aligned}
$$

$(9) \Rightarrow(1)$ For all $B \in \tau_{R_{Y}}, I_{\tau_{Y}}(B)=B$. Since $I_{\tau_{R_{X}}}\left(f^{-1}(B)\right) \geq f^{-1}\left(I_{\tau_{R_{X}}}(B)\right)=$ $f^{-1}(B), f^{-1}(B) \in \tau_{R_{X}}$.

Other cases are similarly proved.
Example 3.3. Let $\left(L=[0,1], \odot, \rightarrow,^{*}\right)$ be a complete residuated lattice with the law of double negation defined by

$$
x \odot y=(x+y-1) \vee 0, \quad x \rightarrow y=(1-x+y) \wedge 1, x^{*}=1-x
$$

Let $X=\{a, b, c\}, Y=\{x, y, z\}$ be sets and $f: X \rightarrow Y$ as follows:

$$
f(a)=x, f(b)=y, f(c)=z
$$

(1) Define $R_{X} \in L^{X \times X}, R_{Y} \in L^{Y \times Y}$ as follows

$$
R_{X}=\left(\begin{array}{ccc}
0.5 & 0.9 & 0.1 \\
0.7 & 0.8 & 0.5 \\
0.9 & 0.6 & 0.7
\end{array}\right), R_{Y}=\left(\begin{array}{ccc}
0.6 & 0.9 & 0.7 \\
0.8 & 1 & 0.5 \\
0.9 & 0.7 & 0.8
\end{array}\right)
$$

Then $R_{X}(a, b) \leq R_{Y}(f(a), f(b))$ for all $a, b \in X$.

$$
R_{X}^{r}=\left(\begin{array}{ccc}
1 & 0.9 & 0.1 \\
0.7 & 1 & 0.5 \\
0.9 & 0.6 & 1
\end{array}\right), R_{Y}^{r}=\left(\begin{array}{ccc}
1 & 0.9 & 0.7 \\
0.8 & 1 & 0.5 \\
0.9 & 0.7 & 1
\end{array}\right)
$$

For $n \geq 2,\left(R_{X}^{r}\right)^{2}=\left(R_{X}^{r}\right)^{n}$ and $\left(R_{Y}^{r}\right)^{2}=\left(R_{Y}^{r}\right)^{n}$ as follows:

$$
\left(R_{X}^{r}\right)^{2}=\left(\begin{array}{ccc}
1 & 0.9 & 0.4 \\
0.7 & 1 & 0.5 \\
0.9 & 0.8 & 1
\end{array}\right),\left(R_{Y}^{r}\right)^{2}=\left(\begin{array}{ccc}
1 & 0.9 & 0.7 \\
0.8 & 1 & 0.5 \\
0.9 & 0.8 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
\bar{R}_{X} & =\bigvee_{n \in N}\left(R_{X}^{r}\right)^{n}=\left(R_{X}^{r}\right)^{2} \\
\bar{R}_{Y} & =\bigvee_{n \in N}\left(R_{Y}^{r}\right)^{n}=\left(R_{Y}^{r}\right)^{2}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& R_{\tau_{R_{X}}}(a, b)=\bigwedge_{B \in \tau_{R_{X}}}(B(a) \rightarrow B(b))=\left(R_{X}^{r}\right)^{2}(a, b) \\
& R_{\tau_{R_{Y}}}(x, y)=\bigwedge_{B \in \tau_{R_{Y}}}(B(x) \rightarrow B(y))=\left(R_{Y}^{r}\right)^{2}(x, y)
\end{aligned}
$$

Then $R_{\tau_{R_{X}}}(a, b) \leq R_{\tau_{R_{X}}}(f(a), f(b))$ for all $a, b \in X$.
(2)

$$
\begin{aligned}
\tau_{R_{X}} & =\left\{\bigvee_{x \in X}\left(a_{x} \odot \bar{R}_{X}(x,-)\right\}\right. \\
& =\left\{\left(a_{1} \odot \bar{R}_{X}(a,-)\right) \vee\left(a_{2} \odot \bar{R}_{X}(b,-)\right) \vee\left(a_{3} \odot \bar{R}_{X}(c,-)\right)\right\} \\
\tau_{R_{X}}^{*} & =\tau_{R_{X}^{-1}}=\left\{\bigwedge_{x \in X}\left(\bar{R}_{X}(x,-) \rightarrow a_{x}\right)\right\} \\
& =\left\{\left(\bar{R}_{X}(a,-) \rightarrow a_{1}\right) \wedge\left(\bar{R}_{X}(b,-) \rightarrow a_{2}\right) \wedge\left(\bar{R}_{X}(c,-) \rightarrow a_{3}\right)\right\}
\end{aligned}
$$

where $a_{i} \in L$ and

$$
\bar{R}_{X}(a,-)=(1,0.9,0.4), \bar{R}_{X}(b,-)=(0.7,1,0.5), \bar{R}_{X}(c,-)=(0.9,0.6,1)
$$

For $A=\left(0.5 \odot \bar{R}_{X}(a,-)\right) \vee\left(0.9 \odot \bar{R}_{X}(b,-)\right) \vee\left(0.8 \odot \bar{R}_{X}(b,-)\right)=(0.7,0.9,0.8)=$ $\bigvee_{x \in X}\left(A(x) \odot \bar{R}_{X}(x,-) \in \tau_{R_{X}}\right.$.

For $B=\left(\bar{R}_{X}(a,-) \rightarrow 0.5\right) \wedge\left(0.9 \odot \bar{R}_{X}(b,-) \rightarrow 0.9\right) \wedge\left(\bar{R}_{X}(b,-) \rightarrow 0.8\right)=$ $(0.5,0.6,0.8)=\bigwedge_{x \in X}\left(\bar{R}_{X}(x,-) \rightarrow B(x)\right) \in \tau_{R_{X}}^{*}$.

$$
\begin{aligned}
\tau_{R_{X}} & =\left\{\bigwedge_{y \in X}\left(\bar{R}_{X}(-, y) \rightarrow b_{y}\right)\right\} \\
& =\left\{\left(\bar{R}_{X}(-, a) \rightarrow b_{1}\right) \wedge\left(\bar{R}_{X}(-, b) \rightarrow b_{2}\right) \wedge\left(\bar{R}_{X}(-, c) \rightarrow b_{3}\right)\right\} \\
\tau_{R_{X}}^{*} & =\tau_{R_{X}^{-1}}=\left\{\bigvee_{y \in X}\left(\bar{R}_{X}(-, y) \odot b_{y}\right)\right\} \\
& =\left\{\left(\bar{R}_{X}(-, a) \odot b_{1}\right) \vee\left(\bar{R}_{X}(-, b) \odot b_{2}\right) \vee\left(\bar{R}_{X}(-, c) \odot b_{3}\right)\right\}
\end{aligned}
$$

where $b_{i} \in L$ and

$$
\bar{R}_{X}(-, a)=(1,0.7,0.9), \bar{R}_{X}(-, b)=(0.9,1,0.8), \bar{R}_{X}(-, c)=(0.4,0.5,1) .
$$

For $A=\left(\bar{R}_{X}(-, a) \rightarrow 0.3\right) \wedge\left(\bar{R}_{X}(-, b) \rightarrow 0.5\right) \wedge\left(\bar{R}_{X}(-, c) \rightarrow 0.2\right)=(0.3,0.6,0.4) \wedge$ $(0.6,0.5,0.7) \wedge(0.8,0.7,0,2)=(0.3,0.5,0,2)=\bigwedge_{x \in X}\left(\bar{R}_{X}(-, x) \rightarrow A(x)\right) \in \tau_{R_{X}}$.

For $B=\left(\bar{R}_{X}(-, a) \odot 0.3\right) \vee\left(\bar{R}_{X}(-, b) \odot 0.5\right) \vee\left(\bar{R}_{X}(-, c) \odot 0.2\right)=(0.3,0,0.2) \vee$ $(0.4,0.5,0.3) \vee(0,0,0,2)=(0.4,0.5,0,3)=\bigvee_{x \in X}\left(\bar{R}_{X}(-, x) \odot A(x)\right) \in \tau_{R_{X}}^{*}$.

$$
\begin{align*}
\tau_{R_{Y}} & =\left\{\bigvee_{x \in Y}\left(a_{x} \odot \bar{R}_{Y}(x,-)\right\}\right. \tag{3}\\
& =\left\{\left(a_{1} \odot \bar{R}_{Y}(x,-)\right) \vee\left(a_{2} \odot \bar{R}_{Y}(y,-)\right) \vee\left(a_{3} \odot \bar{R}_{Y}(z,-)\right)\right\} \\
\tau_{R_{Y}}^{*} & =\tau_{R_{Y}^{-1}}=\left\{\bigwedge_{x \in Y}\left(\bar{R}_{Y}(x,-) \rightarrow a_{x}\right)\right\} \\
& =\left\{\left(\bar{R}_{Y}(x,-) \rightarrow a_{1}\right) \wedge\left(\bar{R}_{Y}(y,-) \rightarrow a_{2}\right) \wedge\left(\bar{R}_{Y}(z,-) \rightarrow a_{3}\right)\right\}
\end{align*}
$$

where $a_{i} \in L$ and

$$
\begin{aligned}
\bar{R}_{Y}(x,-) & =(1,0.9,0.7), \bar{R}_{Y}(y,-)=(0.8,1,0.5), \bar{R}_{Y}(z,-)=(0.9,0.8,1) . \\
\tau_{R_{Y}} & =\left\{\bigwedge_{y \in Y}\left(\bar{R}_{Y}(-, y) \rightarrow b_{y}\right)\right\} \\
& =\left\{\left(\bar{R}_{Y}(-, x) \rightarrow b_{1}\right) \wedge\left(\bar{R}_{Y}(-, y) \rightarrow b_{2}\right) \wedge\left(\bar{R}_{Y}(-, z) \rightarrow b_{3}\right)\right\} \\
\tau_{R_{Y}}^{*} & =\tau_{R_{Y}^{-1}}=\left\{\bigvee_{y \in Y}\left(\bar{R}_{Y}(-, y) \odot b_{y}\right)\right\} \\
& =\left\{\left(\bar{R}_{Y}(-, x) \odot b_{1}\right) \vee\left(\bar{R}_{Y}(-, y) \odot b_{2}\right) \vee\left(\bar{R}_{Y}(-, z) \odot b_{3}\right)\right\}
\end{aligned}
$$

where $b_{i} \in L$ and

$$
\bar{R}_{Y}(-, x)=(1,0.8,0.9), \bar{R}_{Y}(-, y)=(0.9,1,0.8), \bar{R}_{Y}(-, z)=(0.7,0.5,1) .
$$

(4) For $A=(0.2,0.8,0.6) \in L^{X}$,

$$
\begin{aligned}
C_{R_{X}}(A) & =(0.5,0.8,0.6), C_{R_{Y}}(f(A))=(0.6,0.8,0.6) \\
I_{R_{X}}(A) & =(0.2,0.5,0.3), C_{R_{Y}}(f(A))=(0.2,0.4,0.3) \\
C_{R_{X}^{-1}}(A) & =(0.7,0.8,0.6), C_{R_{Y}^{-1}}(f(A))=(0.7,0.8,0.6) \\
I_{R_{X}^{-1}}(A) & =(0.2,0.3,0.6), I_{R_{Y}^{-1}}(f(A))=(0.2,0.3,0.5) .
\end{aligned}
$$

References

1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, (2002).
2. B. De Meyer \& H.De Meyer: On the existence and construction of T-transitive closures. Information Sciences 152 (2003), 167-179.
3. P. Hájek: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998).
4. Fang Jinming: I-fuzzy Alexandrov topologies and specialization orders. Fuzzy Sets and Systems 158 (2007), 2359-2374.
5. Y.C. Kim: Alexandrov L-topologies. International Journal of Pure and Applied Mathematics 93 (2014), no. 2, 165-179.
6. \qquad _ : Alexandrov L-topologies and L-join meet approximation operators. International Journal of Pure and Applied Mathematics 91 (2014), no. 1, 113-129.
7. H. Lai \& D. Zhang: Fuzzy preorder and fuzzy topology. Fuzzy Sets and Systems 157 (2006), 1865-1885.
8. \qquad : Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory. Int. J. Approx. Reasoning 50 (2009), 695-707.
9. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356.
10. \qquad _: Rough probability. Bull. Pol. Acad. Sci. Math. 32 (1984), 607-615.
11. A.M. Radzikowska \& E.E. Kerre: A comparative study of fuzy rough sets. Fuzzy Sets and Systems 126 (2002), 137-155.
12. Y.H. She \& G.J. Wang: An axiomatic approach of fuzzy rough sets based on residuated lattices. Computers and Mathematics with Applications 58 (2009), 189-201.
13. Zhen Ming Ma \& Bao Qing Hu: Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets. Information Sciences 218 (2013), 194-204.
${ }^{\text {a }}$ Department of Mathematics, Gangneung-Wonju National, Gangneung 210-702, Korea
Email address: jmko@gwnu.ac.kr
${ }^{\mathrm{b}}$ Department of Mathematics, Gangneung-Wonju National Gangneung 210-702, Korea
Email address: yck@gwnu.ac.kr

[^0]: Received by the editors June 16, 2014. Accepted September 18, 2014. 2010 Mathematics Subject Classification. 03E72, 03G10, 06A15, 54F05.
 Key words and phrases. complete residuated lattices, fuzzy relations, fuzzy preorder, Alexandrov L-topologies .
 *Corresponding author.

