FUZZY RELATIONS AND ALEXANDROV L-TOPOLOGIES

Jung Mi Ko^a and Yong Chan Kim^{b,*}

ABSTRACT. In this paper, we investigate the relationships between fuzzy relations and Alexandrov *L*-topologies in complete residuated lattices. Moreover, we give their examples.

1. INTRODUCTION

Pawlak [9, 10] introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Hájek [3] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Radzikowska [11] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Lai [7, 8] introduced Alexandrov L-topologies induced by fuzzy rough sets. Algebraic structures of fuzzy rough sets are developed in many directions [1-13].

In this paper, we investigate the relationships between fuzzy relations and Alexandrov L-topologies in complete residuated lattices. Moreover, we give their examples.

2. Preliminaries

Definition 2.1 ([1,3]). An algebra $(L, \land, \lor, \odot, \rightarrow, \bot, \top)$ is called a *complete residuated lattice* if it satisfies the following conditions:

(L1) $L = (L, \leq, \lor, \land, \bot, \top)$ is a complete lattice with the greatest element \top and the least element \bot ;

(L2) (L, \odot, \top) is a commutative monoid;

(L3) $x \odot y \leq z$ iff $x \leq y \to z$ for $x, y, z \in L$.

 $^{\ast} \rm Corresponding \ author.$

© 2014 Korean Soc. Math. Educ.

Received by the editors June 16, 2014. Accepted September 18, 2014.

 $^{2010\} Mathematics\ Subject\ Classification.\ 03E72,\ 03G10,\ 06A15,\ 54F05.$

 $Key\ words\ and\ phrases.$ complete residuated lattices, fuzzy relations, fuzzy preorder, AlexandrovL-topologies .

In this paper, we assume $(L, \wedge, \vee, \odot, \rightarrow, {}^* \bot, \top)$ is a complete residuated lattice with the law of negation; i.e. $x^{**} = x$. For $\alpha \in L, A, \top_x \in L^X$, $(\alpha \to A)(x) = \alpha \to A(x)$, $(\alpha \odot A)(x) = \alpha \odot A(x)$ and $\top_x(x) = \top, \top_x(x) = \bot$, otherwise.

Definition 2.2 ([1,7]). Let X be a set. A function $R: X \times X \to L$ is called a *fuzzy* relation. A fuzzy relation R is called a *fuzzy preorder* if satisfies (R1) and (R2).

(R1) reflexive if $R(x, x) = \top$ for all $x \in X$,

(R2) transitive if $R(x, y) \odot R(y, z) \le R(x, z)$, for all $x, y, z \in X$.

We denote $R^2(x,z) = (R \circ R)(x,z) = \bigvee_{y \in X} (R(x,y) \odot R(y,z)).$

Lemma 2.3 ([1,3]). Let $(L, \lor, \land, \odot, \rightarrow, *, \bot, \top)$ be a complete residuated lattice with a negation *. For each $x, y, z, x_i, y_i \in L$, the following properties hold.

(1) If $y \leq z$, then $x \odot y \leq x \odot z$. (2) If $y \leq z$, then $x \to y \leq x \to z$ and $z \to x \leq y \to x$. (3) $x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \odot y = \bigvee_{i \in \Gamma} (x_i \odot y)$. (4) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i)$ and $(\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y)$. (5) $(x \to y) \odot x \leq y$ and $(y \to z) \odot (x \to y) \leq (x \to z)$. (6) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$ and $(x \odot y)^* = x \to y^*$. (7) $x^* \to y^* = y \to x$ and $(x \to y)^* = x \odot y^*$.

Definition 2.4 ([5-7]). A subset $\tau \subset L^X$ is called an *Alexandrov topology* if it satisfies satisfies the following conditions.

(T1) $\perp_X, \top_X \in \tau$ where $\top_X(x) = \top$ and $\perp_X(x) = \bot$ for $x \in X$.

(T2) If $A_i \in \tau$ for $i \in \Gamma$, $\bigvee_{i \in \Gamma} A_i$, $\bigwedge_{i \in \Gamma} A_i \in \tau$.

(T3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

(T4) $\alpha \to A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

Definition 2.5 ([7]). Let $R \in L^{X \times X}$ be a fuzzy relation. A set $A \in L^X$ is called *extensional* if $A(x) \odot R(x, y) \le A(y)$ for all $x, y \in X$.

3. Fuzzy Relations and Alexandrov L-topologies

Theorem 3.1. Let $R \in L^{X \times X}$ and $R^{-1} \in L^{X \times X}$ with $R^{-1}(x, y) = R(x, y)$.

(1) τ is an Alexandrov topology on X iff $\tau^* = \{A^* \in L^X \mid A \in \tau\}$ is an Alexandrov topology on X.

(2) $\tau_R = \{A \in L^X \mid A(x) \odot R(x, y) \le A(y), x, y \in X\}$ is an Alexandrov topology on X. Moreover, $\tau_{R^{-1}} = \{A^* \mid A \in \tau_R\} = \tau_R^*$.

(3) If \overline{R} is the smallest fuzzy preorder such that $R \leq \overline{R}$, then

$$\overline{R}(x,y) = \bigwedge_{A \in \tau_R} (A(x) \to A(y)) = \bigvee_{n \in N} (R^r)^n (x,y),$$

where $R^r(x,y) = \triangle \lor R(x,y)$ and $\triangle(x,y) = \top$ if x = y and $\triangle(x,y) = \bot$ if $x \neq y$. Moreover,

$$\overline{R}^{-1}(x,y) = \bigwedge_{A \in \tau_R^*} (A(x) \to A(y)) = \overline{R^{-1}}(x,y).$$

(4) $\tau_R = \{A \in L^X \mid \bigvee_{x \in X} (A(x) \odot \overline{R}(x, -)) = A\} = \{\bigvee_{x \in X} (a_x \odot \overline{R}(x, -))\}$ where $\overline{R}(x, -)(y) = \overline{R}(x, y)$ for each $y \in X$.

(5) $\tau_R = \{A \in L^X \mid A = \bigwedge_{y \in X} (\overline{R}(-, y) \to A(y))\} = \{\bigwedge_{y \in X} (\overline{R}(-, y) \to b_y)\}$ where $\overline{R}(-, y)(x) = \overline{R}(x, y)$ for each $x \in X$.

(6) $\tau_R^* = \{A \in L^X \mid \bigvee_{x \in X} (A(x) \odot \overline{R}(-, x)) = A\} = \{\bigvee_{x \in X} (a_x \odot \overline{R}(-, x))\}$ where $\overline{R}(-, x)(y) = \overline{R}(y, x)$ for each $y \in X$.

(7) $\tau_R^* = \{A \in L^X \mid A = \bigwedge_{y \in X} (\overline{R}(y, -) \to A(y))\} = \{\bigwedge_{y \in X} (\overline{R}(y, -) \to b_y)\}$ where $\overline{R}(y, -)(x) = \overline{R}(y, x)$ for each $x \in X$.

(8) $C_{\tau_R}(A) = \bigwedge \{B \in L^X \mid A \leq B, B \in \tau_R\} = \bigvee_{x \in X} (A(x) \odot \overline{R}(x, -)).$ Moreover, $C_{\tau_R}(A) \in \tau_R.$

(9) $I_{\tau_R}(A) = \bigvee \{ B \in L^X \mid B \le A, B \in \tau_R \} = \bigwedge_{x \in X} (\overline{R}(-, x) \to A(x)).$ Moreover, $I_{\tau_R}(A) \in \tau_R.$

(10) $A \in \tau_R$ iff $A = C_{\tau_R}(A) = I_{\tau_R}(A)$. (11) $C_{\tau_R}(A) = (I_{\tau_{R-1}}(A^*))^*$ for all $A \in L^X$.

Proof. (1) Let $A^* \in \tau^*$ for $A \in \tau$. Since $\alpha \odot A^* = (\alpha \to A)^*$ and $\alpha \to A^* = (\alpha \odot A)^*$, τ^* is an Alexandrov topology on X.

(2) (T1) Since $\top_X(x) \odot R(x, y) \le \top_X(y) = \top$ and $\bot_X(x) \odot R(x, y) = \bot = \bot_X(y)$, Then $\bot_X, \top_X \in \tau_R$.

(T2) For $A_i \in \tau_R$ for each $i \in \Gamma$, since $(\bigvee_{i \in \Gamma} A_i(x)) \odot R(x, y) = \bigvee_{i \in \Gamma} (A_i(x) \odot R(x, y)) \le \bigvee_{i \in \Gamma} A_i(y), \bigvee_{i \in \Gamma} A_i \in \tau_R$. Similarly, $\bigwedge_{i \in \Gamma} A_i \in \tau_R$.

(T3) For $A \in \tau_R$, $\alpha \odot A \in \tau_R$.

(T4) For $A \in \tau_R$, by Lemma 2.3(5), since $\alpha \odot (\alpha \to A(x)) \odot R(x, y) \le A(x) \odot R(x, y) \le A(y)$, $(\alpha \to A(x)) \odot R(x, y) \le \alpha \to A(y)$. Then $\alpha \to A \in \tau_R$. Moreover $A \in \tau_R$ iff $A^* \in \tau_{R^{-1}}$ from:

$$\begin{array}{l} A(x) \odot R(x,y) \leq A(y) \text{ iff } R(x,y) \rightarrow A^* \geq A^*(y) \\ \text{ iff } A^*(y) \odot R(x,y) \leq A^*(x) \text{ iff } A^*(y) \odot R^{-1}(y,x) \leq A^*(x) \end{array}$$

(3) Define $R_{\tau_R}(x,y) = \bigwedge_{B \in \tau_R} (B(x) \to B(y))$. Then R_{τ_R} is a fuzzy preorder. Since $B \in \tau_R$ and $B(x) \odot R(x,y) \le B(y)$, then $R(x,y) \le B(x) \to B(y)$. Hence $R(x,y) \leq R_{\tau_R}$. If P is a fuzzy preorder with $R \leq P$, for $P_w(x) = P(w,x)$, then $P_w(x) \odot R(x,y) \leq P_w(x) \odot P(x,y) \leq P_w(y)$. Hence $P_w \in \tau_R$. Thus $R_{\tau_R}(x,y) = \bigwedge_{B \in \tau_R} (B(x) \to B(y)) \leq P_x(x) \to P_x(y) = P(x,y)$. Thus,

$$\overline{R}(x,y) = \bigwedge_{A \in \tau_R} (A(x) \to A(y))$$

Since $R^r(x,y) = \triangle \lor R(x,y)$, we have $(R^r)^n(x,x) = \top$ for each $n \in N$. So $\bigvee_{n \in N} (R^r)^n(x,x) = \top$. Since

$$\bigvee_{y \in X} ((R^r)^k(x,y) \odot (R^r)^m(y,z) \le (R^r)^{k+m}(x,z) \le \bigvee_{n \in N} (R^r)^n(x,z),$$

then $\bigvee_{n \in N} (R^r)^n(x, y) \circ \bigvee_{n \in N} (R^r)^n(y, z) \leq \bigvee_{n \in N} (R^r)^n(x, z)$. Hence $\bigvee_{n \in N} (R^r)^n$ is a fuzzy preorder. If $R \leq P$ and P is fuzzy preorder, then $R^r \leq P$ and $(R^r)^n \leq P^n = P$, thus, $\bigvee_{n \in N} (R^r)^n \leq P$. Hence $\overline{R} = \bigvee_{n \in N} (R^r)^n$.

$$\overline{R}^{-1}(x,y) = \bigwedge_{A \in \tau_R^*} (A(x) \to A(y)) = \overline{R^{-1}}(x,y).$$
$$\overline{R}^{-1}(x,y) = \overline{R}(y,x) = \bigwedge_{A \in \tau_R} (A(y) \to A(x))$$
$$= \bigwedge_{A^* \in \tau_R^*} (A^*(x) \to A^*(y)) = \bigwedge_{A \in \tau_{R-1}} (A(x) \to A(y))$$
$$= \overline{R^{-1}}(x,y).$$

(4) Put $\tau = \{A \in L^X \mid \bigvee_{x \in X} (A(x) \odot \overline{R}(x, -)) = A\}$ and $\tau_1 = \{\bigvee_{x \in X} (a_x \odot \overline{R}(x, -))\}$. Since $A \in \tau_R$, $R_{\tau_R}(x, y) \odot A(x) = \bigwedge_{B \in \tau} (B(x) \to B(y)) \odot A(x) \le (A(x) \to A(y)) \odot A(x) \le A(y)$. Hence $\bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)) \le A(y)$. Since $A(y) = A(y) \odot \overline{R}(y, y) \le \bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)), \bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)) = A(y)$. Thus, $A \in \tau$.

Let $A \in \tau$. Since $R \leq \overline{R}$, $A(x) \odot R(x, y) \leq A(x) \odot \overline{R}(x, y) = A(y)$. Thus, $A \in \tau_R$. Let $A \in \tau$. Then $\bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)) = A(y)$. Put $A(x) = a_x$. Then $\bigvee_{x \in X} (a_x \odot \overline{R}(x, -)) \in \tau_1$.

Let $D = \bigvee_{x \in X} (a_x \odot \overline{R}(x, -)) \in \tau_1$. Then

$$\begin{split} &\bigvee_{w \in X} (D(w) \odot R(w, y)) \\ &= \bigvee_{w \in X} \left(\bigvee_{x \in X} (A(x) \odot \overline{R}(x, w)) \odot \overline{R}(w, y) \right) \\ &= \bigvee_{x \in X} (A(x) \odot \bigvee_{w \in X} (\overline{R}(x, w) \odot \overline{R}(w, y))) \\ &= \bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)) = D(y). \end{split}$$

Thus, $D \in \tau$. Hence $\tau_R = \tau = \tau_1$.

(5) Put $\eta = \{A \in L^X \mid A = \bigwedge_{y \in X} (\overline{R}(-, y) \to A(y))\}$ and $\eta_1 = \{\bigwedge_{y \in X} (\overline{R}(-, y) \to b_y)\}$. Since $A \in \tau_R$, $R_{\tau_R}(x, y) \to A(y) = \bigwedge_{B \in \tau} (B(x) \to B(y)) \to A(y) \ge (A(x) \to A(y)) \to A(y) \ge A(x)$. Hence $A(x) \le \bigwedge_{y \in X} (\overline{R}(x, y) \to A(y))$. Since $A(y) = A(y) \ge A(y)$.

 $\overline{R}(y,y) \to A(y) \ge \bigwedge_{y \in X} (\overline{R}(x,y) \to A(y)), A(x) = \bigwedge_{y \in X} (\overline{R}(x,y) \to A(y)).$ Thus, $A \in \eta$.

Let $A \in \eta$. Since $R \leq \overline{R}$, $\bigwedge_{y \in X} (R(x, y) \to A(y)) \geq \bigwedge_{y \in X} (\overline{R}(x, y) \to A(y)) = A(x)$. Thus, $R(x, y) \to A(y) \geq A(x)$ iff $A(x) \odot R(x, y) \leq A(y)$. So, $A \in \tau_R$.

Let $A \in \eta$. Then $A = \bigwedge_{y \in X} (\overline{R}(-, y) \to A(y))$. Put $A(y) = b_y$. Then $A = \bigwedge_{y \in X} (\overline{R}(-, y) \to b_y) \in \eta_1$.

Let
$$A = \bigwedge_{y \in X} (\overline{R}(-, y) \to b_y) \in \eta_1$$
. Then

$$\begin{split} & \bigwedge_{w \in X} (R(x,w) \to A(w)) \\ &= \bigwedge_{w \in X} (\overline{R}(x,w) \to \bigwedge_{y \in X} (\overline{R}(w,y) \to b_y)) \\ &= \bigwedge_{w \in X} \bigwedge_{y \in X} (\overline{R}(x,w) \to (\overline{R}(w,y) \to b_y)) \\ &= \bigwedge_{w \in X} \bigwedge_{y \in X} ((\overline{R}(x,w) \odot \overline{R}(w,y)) \to b_y) \\ &= \bigwedge_{y \in X} (\bigvee_{w \in X} (\overline{R}(x,w) \odot \overline{R}(w,y)) \to b_y) \\ &= \bigwedge_{w \in X} (\overline{R}(x,y) \to b_y) = A(x). \end{split}$$

Thus, $A \in \eta$. Hence $\tau_R = \eta = \eta_1$.

(6) It follows from $\bigvee_{x \in X} (A(x) \odot \overline{R}(-, x)) = \bigvee_{x \in X} (A(x) \odot \overline{R}^{-1}(x, -)) = A$ iff $A \in \tau_{R^{-1}} = \tau_R^*$.

(7) It follows from $\bigwedge_{x \in X} (\overline{R}(x, -) \to A(x)) = \bigwedge_{x \in X} (\overline{R}^{-1}(-, x) \to A(x)) = A$ iff $A \in \tau_{R^{-1}} = \tau_R^*$.

(8) Put $B = \bigvee_{x \in X} (A(x) \odot \overline{R}(x, -))$. Then $B \in \tau_R$ from:

$$\begin{split} &\bigvee_{w \in X} (B(w) \odot \overline{R}(w, y)) \\ &= \bigvee_{w \in X} \left(\bigvee_{x \in X} (A(x) \odot \overline{R}(x, w)) \odot \overline{R}(w, y) \right) \\ &= \bigvee_{x \in X} (A(x) \odot \bigvee_{w \in X} (\overline{R}(x, w) \odot \overline{R}(w, y))) \\ &= \bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)) = B(y). \end{split}$$

If $A \leq E$ and $E \in \tau_R$, then $B \leq E$ from:

$$B(y) = \bigvee_{x \in X} (A(x) \odot \overline{R}(x, y)) \le \bigvee_{x \in X} (E(x) \odot \overline{R}(x, y)) = E(y).$$

Hence $C_{\tau_R} = B$.

(9) Let $B = \bigwedge_{y \in X} (\overline{R}(-, y) \to A(y)) \in \tau_R$ from

$$\begin{split} & \bigwedge_{w \in X} (\overline{R}(x,w) \to B(w)) \\ &= \bigwedge_{w \in X} (\overline{R}(x,w) \to \bigwedge_{y \in X} (\overline{R}(w,y) \to A(y))) \\ &= \bigwedge_{w \in X} \bigwedge_{y \in X} (\overline{R}(x,w) \to (\overline{R}(w,y) \to A(y))) \\ &= \bigwedge_{w \in X} \bigwedge_{y \in X} ((\overline{R}(x,w) \odot \overline{R}(w,y)) \to A(y)) \\ &= \bigwedge_{y \in X} (\bigvee_{w \in X} (\overline{R}(x,w) \odot \overline{R}(w,y)) \to A(y)) \\ &= \bigwedge_{y \in X} (\overline{R}(x,y) \to A(y)) = B(x). \end{split}$$

If $E \leq A$ and $E \in \tau_R$, then $E \leq B$ from:

$$E(x) = \bigwedge_{y \in X} (\overline{R}(x, y) \to E(y)) \le \bigwedge_{y \in X} (\overline{R}(x, y) \to A(y)) = B(x).$$

Hence $I_{\tau_R} = B$.

(11)

$$C_{\tau_{R}}(A) = \bigwedge \{B \mid A \leq B, \ B \in \tau_{R_{X}} \}$$

= $\bigwedge \{B \mid B^{*} \leq A^{*}, \ B^{*} \in \tau_{R_{X}^{-1}} \}$
= $\left(\bigvee \{B^{*} \mid B^{*} \leq A^{*}, \ B^{*} \in \tau_{R_{X}^{-1}} \}\right)^{*}$
= $(I_{\tau_{R^{-1}}}(A^{*}))^{*}.$
 $(I_{\tau_{R^{-1}}}(A^{*}))^{*} = \left(\bigwedge_{x \in X}(\overline{R}(x, -) \to A^{*}(x))\right)^{*}$
= $\bigvee_{x \in X}(\overline{R}(x, -) \odot A(x)) = C_{\tau_{R}}(A).$

Theorem 3.2. Let R_X and R_Y be fuzzy relations and $f : X \to Y$ a map with $R_X(x,y) \leq R_Y(f(x), f(y))$ for all $x, y \in X$. Then the following equivalent conditions hold.

$$\begin{array}{l} (1) \ f^{-1}(B) \in \tau_{R_X} \ for \ all \ B \in \tau_{R_Y}. \\ (2) \ f^{-1}(B) \in \tau_{R_X}^* \ for \ all \ B \in \tau_{R_Y}^*. \\ (3) \ R_{\tau_{R_X}}(x,y) \leq R_{\tau_{R_Y}}(f(x),f(y)) \ for \ all \ x,y \in X. \\ (4) \ R_{\tau_{R_X}^*}(x,y) \ = \ R_{\tau_{R_X}^{-1}}(y,x) \ \leq \ R_{\tau_{R_Y}^{-1}}(f(y),f(x)) \ = \ R_{\tau_{R_Y}^*}(f(x),f(y)) \ for \ all \ x,y \in X. \\ (5) \ f(C_{\tau_{R_X}}(A)) \leq C_{\tau_{R_Y}}(f(A)) \ for \ all \ A \in L^X. \\ (6) \ f(C_{\tau_{R_X}^{-1}}(A)) \leq C_{\tau_{R_Y}^{-1}}(f(A)) \ for \ all \ A \in L^X. \\ (7) \ C_{\tau_{R_X}}(f^{-1}(B)) \leq f^{-1}(C_{\tau_{R_X}}(B)) \ for \ all \ B \in L^Y. \\ (8) \ C_{\tau_{R_X^{-1}}}(f^{-1}(B)) \leq f^{-1}(C_{\tau_{R_Y^{-1}}}(B)) \ for \ all \ B \in L^Y. \\ (9) \ f^{-1}(I_{\tau_{R_X}}(B)) \leq I_{\tau_{R_Y}}(f^{-1}(B)) \ for \ all \ B \in L^Y. \\ (10) \ f^{-1}(I_{\tau_{R_Y}^{-1}}(B)) \leq I_{\tau_{R_X}^{-1}}(f^{-1}(B)) \ for \ all \ B \in L^Y. \end{array}$$

Proof. (1) For all $B \in \tau_{R_Y}$, $f^{-1}(B) \in \tau_{R_X}$ from:

$$f^{-1}(B)(x) \odot R_X(x,y) \leq B(f(x)) \odot R_Y(f(x), f(y))$$

$$\leq B(f(y)) = f^{-1}(B)(y).$$

 $(1) \Leftrightarrow (2)$ It follows from (1) and Theorem 3.1(2).

$$\begin{array}{l} (1) \Rightarrow (3) \\ R_{\tau_{R_Y}}(f(x), f(y)) &= \bigwedge_{B \in \tau_{R_Y}} (B(f(x)) \to B(f(y))) \\ &= \bigwedge_{B \in \tau_{R_Y}} (f^{-1}(B)(x) \to f^{-1}(B)(y)) \\ &\geq \bigwedge_{A \in \tau_{R_X}} (A(x) \to A(y)) = R_{\tau_{R_X}}(x, y) \end{array} \\ (1) \Rightarrow (5) \\ C_{R_Y}(f(A)) &= \bigwedge \{B \mid f(A) \leq B, B \in \tau_{R_Y}\} \\ &\geq \bigwedge \{B \mid A \leq f^{-1}(B), f^{-1}(B) \in \tau_{R_X}\} \\ &\geq \bigwedge \{f(f^{-1}(B)) \mid A \leq f^{-1}(B), f^{-1}(B) \in \tau_{R_X}\} \\ &\geq f(\bigwedge_{\{f^{-1}(B)\mid A \leq f^{-1}(B), f^{-1}(B) \in \tau_{R_X}\}) \\ &\geq f(C_{R_Y}(A)). \end{aligned} \\ (3) \Rightarrow (5) \\ C_{R_Y}(f(A))(f(x)) &= \bigvee_{w \in Y}(f(A)(w) \odot R_Y(w, f(x)))) \\ &\geq \bigvee_{z \in X}(A(z) \odot R_X(z, x)) = C_{R_X}(A)(x) \end{aligned} \\ (5) \Rightarrow (7) \operatorname{By}(5), \operatorname{put} A = f^{-1}(B). \operatorname{Since} f(C_{\tau_{R_X}}(f^{-1}(B))) \leq C_{\tau_{R_Y}}(f(f^{-1}(B))) \leq \\ C_{\tau_{R_Y}}(B), \text{ we have } C_{\tau_{R_X}}(f^{-1}(B)) \leq f^{-1}(C_{\tau_{R_X}}(B)). \end{aligned} \\ (7) \Rightarrow (1) \operatorname{For all} B \in \tau_{R_Y}, C_{\tau_Y}(B) = B. \operatorname{Since} C_{\tau_{R_X}}(f^{-1}(B)) \leq f^{-1}(C_{\tau_{R_X}}(B)) = \\ f^{-1}(B), f^{-1}(B) \in \tau_{R_X}. \\ (1) \Rightarrow (9) \\ f^{-1}(I_{R_Y}(B))(x) = I_{R_Y}(B)(f(x)) \\ &= \bigvee_{\{E(x)\mid E \leq f^{-1}(B), E \in \tau_{R_X}\}} \\ &= I_{R_X}(f^{-1}(B)). \end{aligned} \\ f^{-1}(I_{R_Y}(B))(x) = I_{R_Y}(B)(f(x)) \\ &= \bigwedge_{w \in Y}(R_Y(f(x), w) \to B(w)) \\ &\leq \bigwedge_{x \in X}(R_Y(f(x), f(z)) \to B(f(z))) \\ &\leq \bigwedge_{x \in X}(R_Y(f(x), f^{-1}(B)) \geq f^{-1}(I_{\tau_{R_X}}(B)) = \\ f^{-1}(B), f^{-1}(B) \in \tau_{R_X}. \end{aligned} \\ (9) \Rightarrow (1) \operatorname{For all} B \in \tau_{R_Y}, I_{\tau_Y}(B) = B. \operatorname{Since} I_{\tau_{R_X}}(f^{-1}(B)) \geq f^{-1}(I_{\tau_{R_X}}(B)) = \\ f^{-1}(B), f^{-1}(B) \in \tau_{R_X}. \end{aligned}$$

Other cases are similarly proved.

Example 3.3. Let $(L = [0, 1], \odot, \rightarrow, *)$ be a complete residuated lattice with the law of double negation defined by

$$x \odot y = (x + y - 1) \lor 0, \ x \to y = (1 - x + y) \land 1, \ x^* = 1 - x.$$

Let $X = \{a, b, c\}, Y = \{x, y, z\}$ be sets and $f : X \to Y$ as follows:

f(a) = x, f(b) = y, f(c) = z.

(1) Define $R_X \in L^{X \times X}, R_Y \in L^{Y \times Y}$ as follows

$$R_X = \begin{pmatrix} 0.5 & 0.9 & 0.1 \\ 0.7 & 0.8 & 0.5 \\ 0.9 & 0.6 & 0.7 \end{pmatrix}, R_Y = \begin{pmatrix} 0.6 & 0.9 & 0.7 \\ 0.8 & 1 & 0.5 \\ 0.9 & 0.7 & 0.8 \end{pmatrix}.$$

Then $R_X(a,b) \leq R_Y(f(a), f(b))$ for all $a, b \in X$.

$$R_X^r = \begin{pmatrix} 1 & 0.9 & 0.1 \\ 0.7 & 1 & 0.5 \\ 0.9 & 0.6 & 1 \end{pmatrix}, R_Y^r = \begin{pmatrix} 1 & 0.9 & 0.7 \\ 0.8 & 1 & 0.5 \\ 0.9 & 0.7 & 1 \end{pmatrix}$$

For $n \ge 2$, $(R_X^r)^2 = (R_X^r)^n$ and $(R_Y^r)^2 = (R_Y^r)^n$ as follows:

$$(R_X^r)^2 = \begin{pmatrix} 1 & 0.9 & 0.4 \\ 0.7 & 1 & 0.5 \\ 0.9 & 0.8 & 1 \end{pmatrix}, (R_Y^r)^2 = \begin{pmatrix} 1 & 0.9 & 0.7 \\ 0.8 & 1 & 0.5 \\ 0.9 & 0.8 & 1 \end{pmatrix}.$$

Then

$$\overline{R}_X = \bigvee_{n \in N} (R_X^r)^n = (R_X^r)^2,$$
$$\overline{R}_Y = \bigvee_{n \in N} (R_Y^r)^n = (R_Y^r)^2.$$

Moreover,

$$R_{\tau_{R_X}}(a,b) = \bigwedge_{B \in \tau_{R_X}} (B(a) \to B(b)) = (R_X^r)^2(a,b)$$
$$R_{\tau_{R_Y}}(x,y) = \bigwedge_{B \in \tau_{R_Y}} (B(x) \to B(y)) = (R_Y^r)^2(x,y)$$

Then $R_{\tau_{R_X}}(a,b) \le R_{\tau_{R_X}}(f(a),f(b))$ for all $a,b \in X$. (2)

$$\begin{aligned} \tau_{R_X} &= \{\bigvee_{x \in X} (a_x \odot \overline{R}_X(x, -)\} \\ &= \{(a_1 \odot \overline{R}_X(a, -)) \lor (a_2 \odot \overline{R}_X(b, -)) \lor (a_3 \odot \overline{R}_X(c, -))\} \\ \tau_{R_X}^* &= \tau_{R_X^{-1}} = \{\bigwedge_{x \in X} (\overline{R}_X(x, -) \to a_x)\} \\ &= \{(R_X(a, -) \to a_1) \land (\overline{R}_X(b, -) \to a_2) \land (\overline{R}_X(c, -) \to a_3)\} \end{aligned}$$

where $a_i \in L$ and

$$\overline{R}_X(a,-) = (1,0.9,0.4), \ \overline{R}_X(b,-) = (0.7,1,0.5), \ \overline{R}_X(c,-) = (0.9,0.6,1).$$

For $A = (0.5 \odot \overline{R}_X(a,-)) \lor (0.9 \odot \overline{R}_X(b,-)) \lor (0.8 \odot \overline{R}_X(b,-)) = (0.7,0.9,0.8) =$

$$\bigvee_{x \in X} (A(x) \odot R_X(x, -) \in \tau_{R_X}.$$

For $B = (\overline{R}_X(a, -) \to 0.5) \land (0.9 \odot \overline{R}_X(b, -) \to 0.9) \land (\overline{R}_X(b, -) \to 0.8) = (0.5, 0.6, 0.8) = \bigwedge_{x \in X} (\overline{R}_X(x, -) \to B(x)) \in \tau^*_{R_X}.$

$$\begin{aligned} \tau_{R_X} &= \{ \bigwedge_{y \in X} (\overline{R}_X(-,y) \to b_y) \} \\ &= \{ (\overline{R}_X(-,a) \to b_1) \land (\overline{R}_X(-,b) \to b_2) \land (\overline{R}_X(-,c) \to b_3) \} \\ \tau_{R_X}^* &= \tau_{R_X^{-1}} = \{ \bigvee_{y \in X} (\overline{R}_X(-,y) \odot b_y) \} \\ &= \{ (\overline{R}_X(-,a) \odot b_1) \lor (\overline{R}_X(-,b) \odot b_2) \lor (\overline{R}_X(-,c) \odot b_3) \} \end{aligned}$$

where $b_i \in L$ and

$$\overline{R}_X(-,a) = (1,0.7,0.9), \ \overline{R}_X(-,b) = (0.9,1,0.8), \ \overline{R}_X(-,c) = (0.4,0.5,1).$$

For $A = (\overline{R}_X(-, a) \to 0.3) \land (\overline{R}_X(-, b) \to 0.5) \land (\overline{R}_X(-, c) \to 0.2) = (0.3, 0.6, 0.4) \land (0.6, 0.5, 0.7) \land (0.8, 0.7, 0, 2) = (0.3, 0.5, 0, 2) = \bigwedge_{x \in X} (\overline{R}_X(-, x) \to A(x)) \in \tau_{R_X}.$

For $B = (\overline{R}_X(-, a) \odot 0.3) \lor (\overline{R}_X(-, b) \odot 0.5) \lor (\overline{R}_X(-, c) \odot 0.2) = (0.3, 0, 0.2) \lor (0.4, 0.5, 0.3) \lor (0, 0, 0, 2) = (0.4, 0.5, 0, 3) = \bigvee_{x \in X} (\overline{R}_X(-, x) \odot A(x)) \in \tau^*_{R_X}.$ (3)

$$\begin{aligned} \tau_{R_Y} &= \{\bigvee_{x \in Y} (a_x \odot \overline{R}_Y(x, -)\} \\ &= \{(a_1 \odot \overline{R}_Y(x, -)) \lor (a_2 \odot \overline{R}_Y(y, -)) \lor (a_3 \odot \overline{R}_Y(z, -))\} \\ \tau_{R_Y}^* &= \tau_{R_Y^{-1}} = \{\bigwedge_{x \in Y} (\overline{R}_Y(x, -) \to a_x)\} \\ &= \{(\overline{R}_Y(x, -) \to a_1) \land (\overline{R}_Y(y, -) \to a_2) \land (\overline{R}_Y(z, -) \to a_3)\} \end{aligned}$$

where $a_i \in L$ and

$$\begin{split} \overline{R}_{Y}(x,-) &= (1,0.9,0.7), \ \overline{R}_{Y}(y,-) = (0.8,1,0.5), \ \overline{R}_{Y}(z,-) = (0.9,0.8,1). \\ \tau_{R_{Y}} &= \{\bigwedge_{y \in Y}(\overline{R}_{Y}(-,y) \to b_{y})\} \\ &= \{(\overline{R}_{Y}(-,x) \to b_{1}) \land (\overline{R}_{Y}(-,y) \to b_{2}) \land (\overline{R}_{Y}(-,z) \to b_{3})\} \\ \tau_{R_{Y}}^{*} &= \tau_{R_{Y}^{-1}} = \{\bigvee_{y \in Y}(\overline{R}_{Y}(-,y) \odot b_{y})\} \\ &= \{(\overline{R}_{Y}(-,x) \odot b_{1}) \lor (\overline{R}_{Y}(-,y) \odot b_{2}) \lor (\overline{R}_{Y}(-,z) \odot b_{3})\} \end{split}$$

where $b_i \in L$ and

$$\overline{R}_{Y}(-,x) = (1,0.8,0.9), \ \overline{R}_{Y}(-,y) = (0.9,1,0.8), \ \overline{R}_{Y}(-,z) = (0.7,0.5,1).$$
(4) For $A = (0.2,0.8,0.6) \in L^{X}$,

$$C_{R_{X}}(A) = (0.5,0.8,0.6), \ C_{R_{Y}}(f(A)) = (0.6,0.8,0.6)$$

$$I_{R_{Y}}(A) = (0.2,0.5,0.3), \ C_{R_{Y}}(f(A)) = (0.2,0.4,0.3)$$

$$\begin{split} C_{R_X^{-1}}(A) &= (0.7, 0.8, 0.6), \ C_{R_Y^{-1}}(f(A)) = (0.7, 0.8, 0.6) \\ I_{R_X^{-1}}(A) &= (0.2, 0.3, 0.6), \ I_{R_Y^{-1}}(f(A)) = (0.2, 0.3, 0.5). \end{split}$$

Jung Mi Ko & Yong Chan Kim

References

- R. Bělohlávek: *Fuzzy Relational Systems*. Kluwer Academic Publishers, New York , (2002).
- B. De Meyer & H.De Meyer: On the existence and construction of T-transitive closures. Information Sciences 152 (2003), 167-179.
- 3. P. Hájek: *Metamathematices of Fuzzy Logic*. Kluwer Academic Publishers, Dordrecht (1998).
- Fang Jinming: I-fuzzy Alexandrov topologies and specialization orders. *Fuzzy Sets and Systems* 158 (2007), 2359-2374.
- 5. Y.C. Kim: Alexandrov L-topologies. International Journal of Pure and Applied Mathematics 93 (2014), no. 2, 165-179.
- 6. _____: Alexandrov L-topologies and L-join meet approximation operators. International Journal of Pure and Applied Mathematics **91** (2014), no. 1, 113-129.
- H. Lai & D. Zhang: Fuzzy preorder and fuzzy topology. Fuzzy Sets and Systems 157 (2006), 1865-1885.
- 8. ____: Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory. Int. J. Approx. Reasoning 50 (2009), 695-707.
- 9. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356.
- 10. ____: Rough probability. Bull. Pol. Acad. Sci. Math. 32 (1984), 607-615.
- A.M. Radzikowska & E.E. Kerre: A comparative study of fuzy rough sets. Fuzzy Sets and Systems 126 (2002), 137-155.
- Y.H. She & G.J. Wang: An axiomatic approach of fuzzy rough sets based on residuated lattices. Computers and Mathematics with Applications 58 (2009), 189-201.
- 13. Zhen Ming Ma & Bao Qing Hu: Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets. *Information Sciences* **218** (2013), 194-204.

^aDepartment of Mathematics, Gangneung-Wonju National ,Gangneung 210-702, Korea *Email address*: jmko@gwnu.ac.kr

^bDepartment of Mathematics, Gangneung-Wonju National Gangneung 210-702, Korea Email address: yck@gwnu.ac.kr