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STRUCTURES INDUCED BY ALEXANDROV FUZZY
TOPOLOGIES

YoNG CHAN KiMm

ABSTRACT. In this paper, we investigate the properties of Alexandrov fuzzy topolo-
gies and meet-join approximation operators. We study fuzzy preorder, Alexandrov
topologies and meet-join approximation operators induced by Alexandrov fuzzy
topologies. We give their examples.

1. INTRODUCTION

Héjek [2] introduced a complete residuated lattice which is an algebraic struc-
ture for many valued logic. Hohle [3] introduced L-fuzzy topologies and L-fuzzy
interior operators on complete residuated lattices. Pawlak [8,9] introduced rough
set theory as a formal tool to deal with imprecision and uncertainty in data anal-
ysis. Radzikowska [10] developed fuzzy rough sets in complete residuated lattice.
Beélohlavek [1] investigated information systems and decision rules in complete resid-
uated lattices. Zhang [6,7] introduced Alexandrov L-topologies induced by fuzzy
rough sets. Kim [5] investigated the properties of Alexandrov topologies in com-
plete residuated lattices.

In this paper, we investigate the properties of Alexandrov fuzzy topologies and
meet-join approximation operators in a sense as Hohle [3]. We study fuzzy preorder,
Alexandrov topologies and meet-join approximation operators induced by Alexan-

drov fuzzy topologies. We give their examples.

2. PRELIMINARIES

Definition 2.1 ([1-3]). A structure (L,V,A,®,—, L, T) is called a complete resid-

uated lattice iff it satisfies the following properties:
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(L1) (L,V, A, L, T)is a complete lattice where L is the bottom element and T is
the top element;
(L2) (L,®,T) is a monoid,;

(L3) It has an adjointness,i.e.

r<y—ziff zOy <z

*

An operator * : L — L defined by a* = a — L is called strong negations if

a = a.

T, ity ==, " | 4L, ify=n=x,
T2(¥) _{ 1, otherwise. T2 _{ T, otherwise.

In this paper, we assume that (L,V,A\,®,—,*, L, T) be a complete residuated

lattice with a strong negation *.

Definition 2.2 ([6,7]). Let X be a set. A function ex : X x X — L is called a
fuzzy preorder if it satisfies the following conditions

(E1) reflexive if ex(z,z) =1 for all z € X,

(E2) transitive if ex(z,y) ® ex(y, 2) < ex(z, z), for all z,y,z € X’

Example 2.3. (1) We define a function e, : L x L — L as ep,(z,y) = x — y. Then
er, is a fuzzy preorder on L.

(2) We define a function e;x : LY x LY — L as e;x(A,B) = \,cx(A(z) —
B(x)). Then ey x is a fuzzy preorder from Lemma 2.4 (9).

Lemma 2.4 ([1,2]). Let (L,V,\,®,—,*, L, T) be a complete residuated lattice with
a strong negation *. For each x,y, z,x;,y; € L, the following properties hold.
(1) Ify<z,thenx®y<z®z.

= (Nier ¥i) = Nier(® — vi) and (Ve i) = y = Nier (@i — y).

)
)
)
)
6) 2O (Vier %) = Vier(@ © i) and (;er i) ©y = Vjer (@i O y).
)
)
)

11) /\iGF T; = (Vz‘er z;)* and \/z‘eF T; = (/\iEF z;)*.
12) (zoy)mz=z—(y—z)=y— (v —2) and (z0y) =z — y"
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(13) z* > y* =y —xzand (z - y)* =z 0y".
() y—2<z0y—z0z2.

Definition 2.5 ([5]). A map M : LX — LY is called an meet-join approzimation
operator if it satisfies the following conditions, for all A, A; € LX, and a € L,
(M1) M(aw — A) = a ® M(A), where (« — A)(z) = a — A(x) for each z € X,
(M2) M(Ajes Ai) = Vier M(Ai),
(M3) A* < M(A),
(M4) M(M*(4)) < M(A).
Definition 2.6 ([4]). An operator T : LX — L is called an Alezandrov fuzzy
topology on X iff it satisfies the following conditions, for all A, 4; € L, and o € L,
(T1) T(ax) = T, where ax(z) = «a for each z € X,

(T2) T(Nier Ai) = Nier T(Ai) and T(Vcp Ai) = Njep T(Ai),
(T3) T(a® A) > T(A), where (a« ® A)(z) = a ® A(x) for each z € X,
(T4) T(a — A) > T(A).

Definition 2.7 ([5]). A subset 7 C L¥ is called an Alezandrov topology if it satisfies
satisfies the following conditions.

(Ol) ax €T.
O2)If Ajerforiel, Vicp Ai, Njer Ai € 7.
(03)a@Acrtforallae Land Acr.
(O4) a - Aerforallae Land A€ T.

Remark 2.8. (1) If T : L* — L is an Alexandrov fuzzy topology. Define T*(A) =
T(A*). Then T* is an Alexandrov fuzzy topology.

(2) If T be an Alexandrov fuzzy topology on X, 77 = {A € LX | T(A) > r} is
an Alexandrov topology on X and 7 C 77 for s <r € L.

3. STRUCTURES INDUCED BY ALEXANDROV FuUzzy TOPOLOGIES

Theorem 3.1. If M is a meet-join approzimation operator, then Toy = {A € L |
M(A) = A*} is an Alezandrov topology on X .

Proof. (O1) Since Tx < M(Lx) and M(Tx)=M(Lx - A)=LxoOM(A) =1,
1lx =M(Tx)and Tx = M(Lx). Then Lx, Tx € 7.

(02) For A; € Taq for each i € T, by (M2), M(A;cr 4i) = Vier M(4;) =
Vier A7+ 50, Nier Ai € Tm. Since Njep A7 < M(Viep Ai) < Njer M(Ai) =
Nier A7, Thus, \/;cr Ai € 77
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(03) For A € Ty, since aOM(a®A) = M(a — (a©A)) > M(A), M(a®A) >
a— M(A)=(a®A)*. Thena® A € Tp.
(04) For A € T, by (M4), M(aa — A)=a® M(A) =a® A*. Hence a — A €
M-
Theorem 3.2. Let T be an Alexandorv fuzzy topology on X. Define
Rip(z,y) = \{Az) y) | T(A) ="}

= \{B() ) | T(B) > r*}.

We have the followmg properties.

(1) R%. is a fuzzy preorder with R, < R5. for each s <.

(2) R;" is a fuzzy preorder with R;" < R;.® for each s <1 and

Ry (z,y) = Rp-(z,y).
(3) Define Mgy, : LX — L as follows
Mp(A)(y) = \/ (A (2) © Rip(z,y)).
zeX

Then Mpy, is a meet-join approzimation operator on X with Mgy, < Mg, for each
s<r.

(4) T = TMR;* .

(5) MR;T s a meet-join approrimation operator on X such that

My (Ay) = \/ (A"(@) © Ry (z,)) = \/ (A"(2) © Rr+(.y)).
zeX zeX

(6) (777)" = TMpy -

(7) Mgz, (A) = N{Ai | A* < A;, T(A;) > r*} for all A € LX and r € L.
Moreover, Ry (z,y) = Mgz, (T4)(y), for each z,y € X.

(8) Mpr(A) = N{Ai | A" < A;, T*(A;) > r*} for all A € LX and r € L.
Moreover, Ry (z,y) = Ry (z,y) = Mgz, (T2)(y), for each z,y € X.

9) If Mg (A) =B for alli € I # 0, then Mpg; (A) = B with s = \;cp7i-

(10) IfMR;'ri(A> = B for alli € T # 0, then MR;S(A) = B with s = \;ep 7i-
Proof. (1) Since T(B) > r* iff B € 7" , then Rl (z,y) = /\BETF<B(Z) — B(y)).
Since Rl.(x,x) = /\Ber;* (B(x) —» B(z)) =T and

Ry, y) © Rp(y, 2) = Nperps (B(z) = B(Y)) © Aperr-(B(y) — B(2))

< Aperps(B(z) = B(y)) © (B(y) — B(2))
< Aper=(B(2) = B(2)) = Ry (2, y).
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Hence R is a fuzzy preorder.
For s <r, since T(B) > s* > r*, we have R}, < Rj..
(2) By a similar method as (1), R;" is a fuzzy preorder. Moreover,
Ry"(z,y) = NB(y) — B(z) | T(B) > r*}
= MB*(z) = B*(y) | T(B*) = T*(B) = r*}
= Rl.(z,y).
(3) (ML) Mpy (Aier A) (W) = Vaoex (Nier 4)"(2)ORL(2,9)) = Vier Mrs (4i)(y)-
(M2)
Mpy (@ = A)(Y) = Vyex((@ = A)"(2) © Ry (z,y))
= Vaex(@© (A%(2) © Ry (2,9))) =  © Mey (A)(y).
(M3) Mgy (A)(y) = Vyex (A*(2) © By(z,y)) = A*(y) © Ry, y) = A*(y)-
(M4)

) © R (y, x))
) © R (y, x)))

Il
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0
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For s <, since R}, < Rj,, then Mpr < Mps.

(4) Since A € 7f*ie. T(A) > r*, Ry (z,y) © A*(z) = /\BET;; (B(x) — B(y)) ®
A*(z) < (A%(z) — A*(y)) © A*(z) < A*(y), by M(3), Mpgr (A) = A*. So, A €
Mg, - Thus 71 C TMpy - Let A€ My, ie. Let Mpr, (A) = A*. Then

A =M (A) = (Vyex(A7(y) © R (y, —)))"
= Nyex(A(y) = Ve (Bly) © BY))

Since \/Bergz (B(y) ® B*) € 77" and /\yeX(A(y) — \/Beng (B(y) ® B¥)) € 1, we
have A € 7. Hence 7rq,, C 77"
T*
(5) It is similarly proved as (4).
(6) Let A € (r7%)*. Since A € 77,
Ry, y) © A%(z) = Apeq+(B(x) — B(y)) © A*(z)
< (A(x) = A™(y) © A% (z) < A*(y).
Hence Mgy (A) = A%ie. A € Tamy, - Thus (777°)* C Tay, -
T T
Let A € TMR};i.e. Mgz (A) = A*. Then

A = My (A) = (Vyex(Aly) © By(y, —)))"
= Nyex(A"(Y) = Vpery- (By) © BY))
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Since \/BeT;*(B(y)@B*) € (r77)" and A\ ey (A*(y) — VBGT;*(B(Z/)QB*)) € (1),
we have A € (77%)*. Hence (77%)* = Taq,,, -
T
(7) For each A € LX with A* < A;, T(A;) > r*, since A; € T = TMyr > then
T*

N Ai < Mp:, (\/ A7) < Ai = Mg (47).
So, Mrr, (V; A7) = \; Ai. Since A >\ A7,
Mpr (A) < Mpr (\/ A7) = \ A = \{Ai| A* < A;, T(4;) =17}
Since Mpr, (Mpr (A)) = Mgy (A) > A* and Mgy, (A) € Tmy, = 777 So,
T* T T T*
Mgy, (A) for all A € LX and r € L.

(8) It is proved in a similar way as (7).
(9) Let ./\/erTz- (A) =B for alli € T # (). Since

Mpri(A) = Vyex (A%(2) © Ry (2, -)) )
“Vaex (A @ O (Dla) — D)) € 7f
Tr
T(B) = T(MR;Iv(A)) > v, then T(B) > V,cpri = (Niepmi)* = s* where s =
Nicr7i- Since B* € (13)* = TMps > then Mps (B*) = B = MR;}‘ (A) > A*. So,
A> M*ST(B*) = B*. Thus
MRST(A) < MR%(ME%(B*) = MRST(B*) = B.
Since s < r;, Mps, (A) ZMR;}'(A) = B. Thus Mg;,(4) = B. O
Theorem 3.3. Let T be an Alexandorv fuzzy topology on X. We have the following

properties.
(1) Define Ty, : LX — L as

Tarr(4) = \/{r} € L| My (4) = A"},

Then Ty, = T* is an Alexandrov fuzzy topology on X.
(2) Define T, : LX — L as
Ty (A) = \/{rf € L| M- (A) = A"}
Then Tpr,. = T is an Alexandrov fuzzy topology on X.

(3) GLX(MR;(A%B) =erx (MR;* (B),A) for all A, B € X,
(4) There exists an Alexandrov fuzzy topology T" such that

T"(A) = epx (Mps (A), A%).
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Ifr <s, then T" < T for all A € LX.
(5) There ezists an Alezandrov fuzzy topology T*" such that
T (A) =epx (MR; (A), A%).

Moreover, T*"(A) = T"(A*) for all A € LX. Ifr < s, then T*" < T** for all
AeLX.
(6) Define Ty : LX — L as

Tu(A) = \/{r" € L|T"(A)=T}.

Then Ty = T* = Ty, is an Alexandrov fuzzy topology on X.
(7) Define Ty : LX — L as

Ty-(A) = \/{r" € L| T"(4) =T}.
Then Ty« = T = Ty, is an Alexandrov fuzzy topology on X.

Proof. (1) We only show that Tjz, = T*. Let /\/lR;i (A) = A*. Then A € T, =
T
(77)* from Theorem 3.3.(6). So, T*(A) = T(A*) = T(MRrTi(A)) > r¥. Thus,

Tarp(4) = \/{r} € L | My (4) = A} < T(A),
Since T*(A) > (T(A))*, then 7% = Taq,,, with s = T(A). Thus,
T
Tarp (A) = \/{r] € L| Mpri(4) = A7} > s* = T*(A).

Hence Ty, = T*.

X
= Nyex(Viex(4*(z) © Ryp(z,y)) — B(y))
3) = Nyex Noex (B (2,y) — (A% (z) — B(y)))
= Nyex Neex(Br(z,y) — (B*(y) — A(z)))
= NeexVyex (B*(y) © Ryp(z,y)) — A(z))
= eLX(MR;r B), A)

(4) (T1) Since Mgy (ax)(y) = Vyex(ax(z) © Rp(z,9)) = 2O Ve x Bp(z,y) =
a, T (ax) = €LX(MR%(05)(),04)() =T.
(T2) Since Mgy (V;er 4i) < Nier Mpz (Ai), we have
TT(\/ier Ai) =erx (MRTT(\/ieF A;), (\/ieF A;)")

> epx (Nier M. (Ai), Nier 47)
> Nier enx (Mpz.(4i), Ai) = Njer T"(Ai)
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T"(Njer Ai) = epx (Mrr. (Nier 4i)s (Nier 4i)¥)
=erx (VieF MR’"T (Ai), VieF A;k)
> Nier eLx (MRQ(Ai)a A7) = Nier T (4)
(T3) Since a ©® Mpr (0 ® A) = Mpr (o — (a® A)) < Mgz (A), then Mpr (o ©
A) <a — Mgr (A). Thus

T'(a® A) = epx (Mg (a © 4), (¢ © A)7)
> eLX(a — MR%(A)vO‘ — A*)
> erx (MRTT(A),A*) =T"(A)

(T4)
T'(a — A) = epx(Mpr (e — A), (a — A)")
=erx(a® MR%(A), a® AY)
> epx (Mp (A), A7) = T (A)
Hence T" is an Alexandrov fuzzy topology. Since Mps, < Mgy, for r < s, T*(A) =
epx (Mps (4), A7) > ex (M (4), A%) = T7(A).
(5) From a similar method as (4), T*" is an Alexandrov fuzzy topology. By (3),
TT(A*) =erx (MR%(A*),A) =erx (MR;* (A),A*) = T*T(A) for all A € LX.
(6) Since T"(A) = e x (Mpgr.(A), A*) = T iff A* = Mpr (A), by (9),

Tu(A) =V{rreLlL|T(A) =T}
=V{r* € L| Mgy (A) = A"}
— Ty, (A) = T*(A).

(2) and (7) are similarly proved as (1) and (6), respectively. O

Example 3.4. Let (L = [0,1],®,—,") be a complete residuated lattice with a
strong negation.
(1) Let X = {x,y, 2} be a set. Define a map T : [0,1]¥ — [0,1] as

T(A) = A(z) — A(z).

Trivially, T(ax) =1

Since a ® A(z) — a ® A(z) > A(z) — A(z) from Lemma 2.4 (14), T(a ®
A) > T(A). Since (@ — A(z)) — (o — A(z)) > A(x) — A(z) from Lemma
2.4 (10), T(aw — A) > T(A). By Lemma 2.4 (8), T(V;cr 4i) > Ajer T(A;) and
T(N;er Ai) > Nier T(A;). Hence T is an Alexandrov fuzzy topology.

If T(A) = A(z) — A(z) > r*, then A(z) > A(z) ©r*. Put A(z) =1, A(y) = 0.
So, Ry (x,y) = N{A(z) — A(y) | T(A) = 7"} = 0 and Ry(z,2) = N{A(z) — A(2) |
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T(A) > r*} = r*, similarly, we can obtain

Ri(z,z) =1 Rp(r,y)=0 Rl(z,z)=r
Ry (ya ) =0 RT(y’ ) =1 Rg“(ya Z) =0
RT(z z)=0 Ri(z,y)=0 Rp(z,2)=1
By Theorem 3.2(3), we obtain Mgz (A)(y) =V, ecx(A"(z) © R(z,y)) such that
Mg (A) = (A% (z), A"(y), A%(2) V (A" (z) © 7))
If A*(z) ©r* < A*(2), then Mpr (A) = A*. Thus 4 € My - Moreover, since
T*(A) = A*(z) — A*(2) > r* iff A*(2) > A*(z) Or*, Ae . iff Ae My - So,
The = TMyy, - From Theorem 3.3(1), we have
T
Tap(A) =V{r* € L| Mg (A) = A}
= A*(z) — A*(z) = T(A*) = T*(A).
Moreover, we obtain

T'(A) = Apex Mz (A)(z) — A*(2))
= (A%(x) O17) = A*(z) = 1" — (A%(z) — A*(2)).

Tu(A) =V{™elL|T(A)=1}
= A*(z) — A*(2).

Hence Ty = Ty, = T*.
M (1 = A\{B(2) | B> 1., T(B) > r"}

Since B(x) =1 and T(B) =1 — B(z) = B(z) > r*, then Mgz (13)(z) = r*.

Mgz (1 = A\{B()|B>1,, T(B) >r*} =1
Mg (1 /\{B | B>1,, T(B)>r*} =0
Mp; (12)(x) = \{B(z) | B > 1., T(B) > 1"}

)
Since B(z) =1 and T(B ) = B(:U) — 1 =1, then Mpr (17)(z) = 0.

Mp; (17)(2) =1 Mgy (15)(y) =0 Mgy (13)(2) = r*
Mpp (1)(x) =0 Mg (1;)(y) =1 Mg (
15)(@) =0 Mg (19)(y) =0 Mpy(
Then Rp(z,y) = Mgz (13)
(2) By (1), we obtain a map T* : [0,1] — [0,1] as

T*(A) = A*(z) — A*(2) = A(z) — A(z).
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Since T*(A) = A(z) — A(x) > r*, then A(x) > A(z) © r*. Put A(z) =

Mag. (A)(y) = \/ (A(2) © Ry, (2,9)).

reX

Mgz, (A) = (A%(z) Vv (A7(2) ©17), A%(y), A" (2))

1, A(y)

=0.
MNMAz) — Aly) | T(A) = 7"} = 0 and Ri.(z,2) = A{A(2) —
}

If A*(z)or® < A*(z), then Mpr (A) = A™. If Mpr (A) = A", then A*(2)Or* <
A*(z). Moreover, since T(A) = A(z) — A(z) > r* iff A*(2) ©r* < A*(2), A€ 74

iff Ae TMpr - Thus
Tasy. (4) = V{r* € L| My, (4) = A)
= A*(z) = A*(z) = T(A) = A(z) — A(2).
Moreover, we obtain
T(A) = NpexMaz, (A)(z) — A(z)
= (A*(2) O1r*) = A*(x) =1 — (A*(2) — A*(x)).
Ty+(A) =\/{r*eL|T"(A) =1}
= A*(z) —» A*(x) = T(A).
Hence Ty« = Ty, = T.

Mg = \{B(z) | B> 1,, T*(B) > 1"}
Since B(x) =1 and T*( ) = B( ) — 1=1, then Mgy (17)(2) = 0.
Mp, (13)( :/\{B yeLX |B>1,, T*(B) > r*} =0
Mg, = A\{Bly) e LX | B>1,, T*(B) > r} =1

15)(x —/\{B e LX | B> 1., T*(B) > r*}

Since B(z) = 1 and T*(B) =1 — B(z) = B(z) > r*, then B(z) > r*.

Mgy, (17)(x) = 7.

Mg, (13)(@) =1 Mgy (13)(y) =0 Mg (13)(2) =0
Mepy, (1)(x) =0 Mgy (1))(y) =1 Mg (15)(2) =0
Mpr, (12)(@) =1 Mgy, (12)(y) =0 Mgy, (12)(2) =1

*

We have
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Then Rfp.(z,y) = Mgy, (13)(y).
(3) Let (L = [0,1], ®, —,* ) be a complete residuated lattice with a strong negation
defined by, for each n € N,

rOyYy= (($”+y”—1)v0)%, T oy = (1—x”+y”)%/\1, a:*:(l—x”)%.
By (1) and (2), we obtain
T(A) = (1 — A(z)" + A(z)")n A1, T*(A)=(1—A(z)" + A(z)")w A L.

10 (1—r)w 1 0
R = 0 1 0 Rl = 0 . 0
00 1 (I—7r")n 1

Since T(A) = (1 — A(z)" + A(z)")= A1 > (1 — "), we have
Th =My, = {A €LY [ Az) - A"(z) <17}
e = TMpy = {Ae LY | A™(2) — A™(z) <"}

T'(4) = (A"(2) 0r) = A%(z) = (" — (A"(@))" + (A"(2))") " AL
T (4) = (A(z) @) = Ale) = (" — (A"(2))" + (A"(@))")« A L.

REFERENCES

—_

R. Bélohlavek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
. P. Hajek: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht,
1998.

3. U. Hohle & S.E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology, and Measure
Theory, The Handbooks of Fuzzy Sets Series 3. Kluwer Academic Publishers, Boston,
1999.

4. Fang Jinming: I-fuzzy Alexandrov topologies and specialization orders. Fuzzy Sets and
Systems 158 (2007), 2359-2374.

5. Y.C. Kim: Alexandrov L-topologies and L-join meet approximation operators. Inter-
national Journal of Pure and Applied Mathematics. 91 (2014), no. 1, 113-129.

6. H. Lai & D. Zhang: Fuzzy preorder and fuzzy topology. Fuzzy Sets and Systems 157
(2006), 1865-1885.

: Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set
theory. Int. J. Approx. Reasoning 50 (2009), 695-707.

8. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356.

[\




194 YonGg CHAN Kim

9. : Rough probability. Bull. Pol. Acad. Sci. Math. 32 (1984), 607-615.

10. A.M. Radzikowska & E.E. Kerre: A comparative study of fuzy rough sets. Fuzzy Sets
and Systems 126 (2002), 137-155.

11. Y.H. She & G.J. Wang: An axiomatic approach of fuzzy rough sets based on residuated
lattices. Computers and Mathematics with Applications 58 (2009), 189-201.

12. Zhen Ming Ma & Bao Qing Hu: Topological and lattice structures of L-fuzzy rough

set determined by lower and upper sets. Information Sciences 218 (2013), 194-204.

DEPARTMENT OF MATHEMATICS, GANGNEUNG-WONJU NATIONAL UNIVERSITY, GANGNEUNG 210-
702, KOREA
Email address: yck@gwnu.ac.kr



