J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2014.21.3.183 Volume 21, Number 3 (August 2014), Pages 183–194

STRUCTURES INDUCED BY ALEXANDROV FUZZY TOPOLOGIES

YONG CHAN KIM

ABSTRACT. In this paper, we investigate the properties of Alexandrov fuzzy topologies and meet-join approximation operators. We study fuzzy preorder, Alexandrov topologies and meet-join approximation operators induced by Alexandrov fuzzy topologies. We give their examples.

1. INTRODUCTION

Hájek [2] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Höhle [3] introduced L-fuzzy topologies and L-fuzzy interior operators on complete residuated lattices. Pawlak [8,9] introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Radzikowska [10] developed fuzzy rough sets in complete residuated lattice. Bělohlávek [1] investigated information systems and decision rules in complete residuated lattices. Zhang [6,7] introduced Alexandrov L-topologies induced by fuzzy rough sets. Kim [5] investigated the properties of Alexandrov topologies in complete residuated lattices.

In this paper, we investigate the properties of Alexandrov fuzzy topologies and meet-join approximation operators in a sense as Höhle [3]. We study fuzzy preorder, Alexandrov topologies and meet-join approximation operators induced by Alexandrov fuzzy topologies. We give their examples.

2. Preliminaries

Definition 2.1 ([1-3]). A structure $(L, \lor, \land, \odot, \rightarrow, \bot, \top)$ is called a *complete residuated lattice* iff it satisfies the following properties:

 $\bigodot 2014$ Korean Soc. Math. Educ.

Received by the editors March 26, 2014. Accepted June 3, 2014.

²⁰¹⁰ Mathematics Subject Classification. 03E72, 03G10, 06A15, 54F05.

Key words and phrases. complete residuated lattices, fuzzy preorder, meet-join approximation operators, Alexandrov (fuzzy) topologies.

(L1) $(L, \lor, \land, \bot, \top)$ is a complete lattice where \bot is the bottom element and \top is the top element;

(L2) (L, \odot, \top) is a monoid;

(L3) It has an adjointness, i.e.

$$x \leq y \rightarrow z$$
 iff $x \odot y \leq z$.

An operator $*: L \to L$ defined by $a^* = a \to \bot$ is called *strong negations* if $a^{**} = a$.

$$\top_x(y) = \begin{cases} \top, & \text{if } y = x, \\ \bot, & \text{otherwise.} \end{cases} \ \ \top_x^*(y) = \begin{cases} \bot, & \text{if } y = x, \\ \top, & \text{otherwise.} \end{cases}$$

In this paper, we assume that $(L, \lor, \land, \odot, \rightarrow, *, \bot, \top)$ be a complete residuated lattice with a strong negation *.

Definition 2.2 ([6,7]). Let X be a set. A function $e_X : X \times X \to L$ is called a *fuzzy preorder* if it satisfies the following conditions

- (E1) reflexive if $e_X(x, x) = 1$ for all $x \in X$,
- (E2) transitive if $e_X(x, y) \odot e_X(y, z) \le e_X(x, z)$, for all $x, y, z \in X'$

Example 2.3. (1) We define a function $e_L : L \times L \to L$ as $e_L(x, y) = x \to y$. Then e_L is a fuzzy preorder on L.

(2) We define a function $e_{L^X} : L^X \times L^X \to L$ as $e_{L^X}(A, B) = \bigwedge_{x \in X} (A(x) \to B(x))$. Then e_{L^X} is a fuzzy preorder from Lemma 2.4 (9).

Lemma 2.4 ([1,2]). Let $(L, \lor, \land, \odot, \rightarrow, *, \bot, \top)$ be a complete residuated lattice with a strong negation *. For each $x, y, z, x_i, y_i \in L$, the following properties hold.

(1) If $y \leq z$, then $x \odot y \leq x \odot z$. (2) If $y \leq z$, then $x \to y \leq x \to z$ and $z \to x \leq y \to x$. (3) $x \to y = \top$ iff $x \leq y$. (4) $x \to \top = \top$ and $\top \to x = x$. (5) $x \odot y \leq x \land y$.

(6)
$$x \odot (\bigvee_{i \in \Gamma} y_i) = \bigvee_{i \in \Gamma} (x \odot y_i) \text{ and } (\bigvee_{i \in \Gamma} x_i) \odot y = \bigvee_{i \in \Gamma} (x_i \odot y).$$

(7)
$$x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i) \text{ and } (\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y).$$

(8)
$$\bigvee_{i\in\Gamma} x_i \to \bigvee_{i\in\Gamma} y_i \ge \bigwedge_{i\in\Gamma} (x_i \to y_i) \text{ and } \bigwedge_{i\in\Gamma} x_i \to \bigwedge_{i\in\Gamma} y_i \ge \bigwedge_{i\in\Gamma} (x_i \to y_i).$$

(9) $(x \to y) \odot x \le y$ and $(y \to z) \odot (x \to y) \le (x \to z)$.

(10)
$$x \to y \le (y \to z) \to (x \to z)$$
 and $x \to y \le (z \to x) \to (z \to y)$.

- (11) $\bigwedge_{i\in\Gamma} x_i^* = (\bigvee_{i\in\Gamma} x_i)^* \text{ and } \bigvee_{i\in\Gamma} x_i^* = (\bigwedge_{i\in\Gamma} x_i)^*.$
- (12) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$ and $(x \odot y)^* = x \to y^*$.

(13) $x^* \to y^* = y \to x \text{ and } (x \to y)^* = x \odot y^*.$ (14) $y \to z \le x \odot y \to x \odot z.$

Definition 2.5 ([5]). A map $\mathcal{M} : L^X \to L^Y$ is called an *meet-join approximation* operator if it satisfies the following conditions, for all $A, A_i \in L^X$, and $\alpha \in L$,

- (M1) $\mathcal{M}(\alpha \to A) = \alpha \odot \mathcal{M}(A)$, where $(\alpha \to A)(x) = \alpha \to A(x)$ for each $x \in X$,
- (M2) $\mathcal{M}(\bigwedge_{i \in I} A_i) = \bigvee_{i \in I} \mathcal{M}(A_i),$
- (M3) $A^* \leq \mathcal{M}(A),$
- (M4) $\mathcal{M}(\mathcal{M}^*(A)) \leq \mathcal{M}(A).$

Definition 2.6 ([4]). An operator $\mathbf{T} : L^X \to L$ is called an *Alexandrov fuzzy* topology on X iff it satisfies the following conditions, for all $A, A_i \in L^X$, and $\alpha \in L$,

- (T1) $\mathbf{T}(\alpha_X) = \top$, where $\alpha_X(x) = \alpha$ for each $x \in X$,
- (T2) $\mathbf{T}(\bigwedge_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i) \text{ and } \mathbf{T}(\bigvee_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i),$
- (T3) $\mathbf{T}(\alpha \odot A) \ge \mathbf{T}(A)$, where $(\alpha \odot A)(x) = \alpha \odot A(x)$ for each $x \in X$,
- (T4) $\mathbf{T}(\alpha \to A) \ge \mathbf{T}(A).$

Definition 2.7 ([5]). A subset $\tau \subset L^X$ is called an *Alexandrov topology* if it satisfies satisfies the following conditions.

- (O1) $\alpha_X \in \tau$.
- (O2) If $A_i \in \tau$ for $i \in \Gamma$, $\bigvee_{i \in \Gamma} A_i$, $\bigwedge_{i \in \Gamma} A_i \in \tau$.
- (O3) $\alpha \odot A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.
- (O4) $\alpha \to A \in \tau$ for all $\alpha \in L$ and $A \in \tau$.

Remark 2.8. (1) If $\mathbf{T} : L^X \to L$ is an Alexandrov fuzzy topology. Define $\mathbf{T}^*(A) = \mathbf{T}(A^*)$. Then \mathbf{T}^* is an Alexandrov fuzzy topology.

(2) If **T** be an Alexandrov fuzzy topology on X, $\tau_T^r = \{A \in L^X \mid \mathbf{T}(A) \ge r\}$ is an Alexandrov topology on X and $\tau_T^r \subset \tau_T^s$ for $s \le r \in L$.

3. Structures Induced by Alexandrov Fuzzy Topologies

Theorem 3.1. If \mathcal{M} is a meet-join approximation operator, then $\tau_{\mathcal{M}} = \{A \in L^X \mid \mathcal{M}(A) = A^*\}$ is an Alexandrov topology on X.

Proof. (O1) Since $\top_X \leq \mathcal{M}(\perp_X)$ and $\mathcal{M}(\top_X) = \mathcal{M}(\perp_X \to A) = \perp_X \odot \mathcal{M}(A) = \perp$, $\perp_X = \mathcal{M}(\top_X)$ and $\top_X = \mathcal{M}(\perp_X)$. Then $\perp_X, \top_X \in \tau_{\mathcal{M}}$.

(O2) For $A_i \in \tau_{\mathcal{M}}$ for each $i \in \Gamma$, by (M2), $\mathcal{M}(\bigwedge_{i \in \Gamma} A_i) = \bigvee_{i \in \Gamma} \mathcal{M}(A_i) = \bigvee_{i \in \Gamma} A_i^*$. So, $\bigwedge_{i \in \Gamma} A_i \in \tau_{\mathcal{M}}$. Since $\bigwedge_{i \in \Gamma} A_i^* \leq \mathcal{M}(\bigvee_{i \in \Gamma} A_i) \leq \bigwedge_{i \in \Gamma} \mathcal{M}(A_i) = \bigwedge_{i \in \Gamma} A_i^*$, Thus, $\bigvee_{i \in \Gamma} A_i \in \tau_{\mathcal{M}}$.

(O3) For $A \in \tau_{\mathcal{M}}$, since $\alpha \odot \mathcal{M}(\alpha \odot A) = \mathcal{M}(\alpha \to (\alpha \odot A)) \ge \mathcal{M}(A), \mathcal{M}(\alpha \odot A) \ge \alpha \to \mathcal{M}(A) = (\alpha \odot A)^*$. Then $\alpha \odot A \in \tau_{\mathcal{M}}$.

(O4) For $A \in \tau_{\mathcal{M}}$, by (M4), $\mathcal{M}(\alpha \to A) = \alpha \odot \mathcal{M}(A) = \alpha \odot A^*$. Hence $\alpha \to A \in \tau_{\mathcal{M}}$.

Theorem 3.2. Let \mathbf{T} be an Alexandorv fuzzy topology on X. Define

$$R_T^r(x,y) = \bigwedge \{A(x) \to A(y) \mid \mathbf{T}(A) \ge r^*\}$$
$$R_T^{-r}(x,y) = \bigwedge \{B(y) \to B(x) \mid \mathbf{T}(B) \ge r^*\}.$$

We have the following properties.

- (1) R_T^r is a fuzzy preorder with $R_T^r \leq R_T^s$ for each $s \leq r$.
- (2) R_T^{-r} is a fuzzy preorder with $R_T^{-r} \leq R_T^{-s}$ for each $s \leq r$ and

$$R_T^{-r}(x,y) = R_{T^*}^r(x,y).$$

(3) Define $\mathcal{M}_{R_{\tau}^r}: L^X \to L^X$ as follows

$$\mathcal{M}_{R_T^r}(A)(y) = \bigvee_{x \in X} (A^*(x) \odot R_T^r(x, y)).$$

Then $\mathcal{M}_{R_T^r}$ is a meet-join approximation operator on X with $\mathcal{M}_{R_T^r} \leq \mathcal{M}_{R_T^s}$ for each $s \leq r$.

- (4) $\tau_T^{r*} = \tau_{\mathcal{M}_{R_{T*}^r}}$.
- (5) $\mathcal{M}_{R_{\pi}^{-r}}$ is a meet-join approximation operator on X such that

$$\mathcal{M}_{R_T^{-r}}(A)(y) = \bigvee_{x \in X} (A^*(x) \odot R_T^{-r}(x, y)) = \bigvee_{x \in X} (A^*(x) \odot R_T^*(x, y)).$$

(6)
$$(\tau_T^{r*})^* = \tau_{\mathcal{M}_{R_T^r}}.$$

(7) $\mathcal{M}_{R_{T^*}^r}(A) = \bigwedge \{A_i \mid A^* \leq A_i, \mathbf{T}(A_i) \geq r^*\}$ for all $A \in L^X$ and $r \in L$. Moreover, $R_T^r(x, y) = \mathcal{M}_{R_{T^*}^r}(\top_x)(y)$, for each $x, y \in X$.

(8) $\mathcal{M}_{R_T^r}(A) = \bigwedge \{A_i \mid A^* \leq A_i, \mathbf{T}^*(A_i) \geq r^*\}$ for all $A \in L^X$ and $r \in L$. Moreover, $R_T^{-r}(x, y) = R_{T^*}^r(x, y) = \mathcal{M}_{R_{T^*}^r}(\mathsf{T}_x)(y)$, for each $x, y \in X$.

(9) If $\mathcal{M}_{R_{\tau}^{r_i}}(A) = B$ for all $i \in \Gamma \neq \emptyset$, then $\mathcal{M}_{R_{\tau}^s}(A) = B$ with $s = \bigwedge_{i \in \Gamma} r_i$.

(10) If $\mathcal{M}_{R_T^{-r_i}}(A) = B$ for all $i \in \Gamma \neq \emptyset$, then $\mathcal{M}_{R_T^{-s}}(A) = B$ with $s = \bigwedge_{i \in \Gamma} r_i$.

Proof. (1) Since $\mathbf{T}(B) \geq r^*$ iff $B \in \tau_T^{r*}$, then $R_T^r(x, y) = \bigwedge_{B \in \tau_T^{r*}} (B(x) \to B(y))$. Since $R_T^r(x, x) = \bigwedge_{B \in \tau_T^{r*}} (B(x) \to B(x)) = \top$ and

$$\begin{aligned} R_T^r(x,y) \odot R_T^r(y,z) &= \bigwedge_{B \in \tau_T^{r*}} (B(x) \to B(y)) \odot \bigwedge_{B \in \tau_T^{r*}} (B(y) \to B(z)) \\ &\leq \bigwedge_{B \in \tau_T^{r*}} (B(x) \to B(y)) \odot (B(y) \to B(z)) \\ &\leq \bigwedge_{B \in \tau_T^{r*}} (B(x) \to B(z)) = R_T^r(x,y). \end{aligned}$$

Hence R_T^r is a fuzzy preorder.

For $s \leq r$, since $\mathbf{T}(B) \geq s^* \geq r^*$, we have $R_T^r \leq R_T^s$. (2) By a similar method as (1), R_T^{-r} is a fuzzy preorder. Moreover,

$$\begin{aligned} R_T^{-r}(x,y) &= \bigwedge \{B(y) \to B(x) \mid \mathbf{T}(B) \ge r^* \} \\ &= \bigwedge \{B^*(x) \to B^*(y) \mid \mathbf{T}(B^*) = \mathbf{T}^*(B) \ge r^* \} \\ &= R_{T^*}^r(x,y). \end{aligned}$$

(3) (M1) $\mathcal{M}_{R_T^r}(\bigwedge_{i\in\Gamma} A_i)(y) = \bigvee_{x\in X} ((\bigwedge_{i\in\Gamma} A_i)^*(x)\odot R_T^r(x,y)) = \bigvee_{i\in\Gamma} \mathcal{M}_{R_T^r}(A_i)(y).$ (M2)

$$\mathcal{M}_{R_T^r}(\alpha \to A)(y) = \bigvee_{x \in X} ((\alpha \to A)^*(x) \odot R_T^r(x, y)) = \bigvee_{x \in X} (\alpha \odot (A^*(x) \odot R_T^r(x, y))) = \alpha \odot \mathcal{M}_{R_T^r}(A)(y).$$

(M3) $\mathcal{M}_{R_T^r}(A)(y) = \bigvee_{x \in X} (A^*(x) \odot R_T^r(x, y)) \ge A^*(y) \odot R_T^r(y, y) = A^*(y).$ (M4)

$$\mathcal{M}_{R_T^r}(\mathcal{M}_{R_T^r}^*(A))(x) = \bigvee_{y \in X} (\mathcal{M}_{R_T^r}(A)(y) \odot R_T^r(y,x)) \\ = \bigvee_{y \in X} (\bigvee_{z \in X} (A^*(z) \odot R_T^r(z,y)) \odot R_T^r(y,x)) \\ = \bigvee_{z \in X} (A^*(z) \odot \bigvee_{y \in X} (R_T^r(z,y) \odot R_T^r(y,x))) \\ \le \bigvee_{z \in X} (A^*(z) \odot R_T^r(z,x)) \\ = \mathcal{M}_{R_T^r}(A)(x).$$

For $s \leq r$, since $R_T^r \leq R_T^s$, then $\mathcal{M}_{R_T^r} \leq \mathcal{M}_{R_T^s}$.

(4) Since $A \in \tau_T^{r*}$; i.e. $\mathbf{T}(A) \geq r^*$, $R_{T^*}^r(x, y) \odot A^*(x) = \bigwedge_{B \in \tau_{T^*}^{r*}} (B(x) \to B(y)) \odot A^*(x) \leq (A^*(x) \to A^*(y)) \odot A^*(x) \leq A^*(y)$, by M(3), $\mathcal{M}_{R_{T^*}^r}(A) = A^*$. So, $A \in \tau_{\mathcal{M}_{R_{T^*}}}$. Thus $\tau_T^{r*} \subset \tau_{\mathcal{M}_{R_{T^*}}}$. Let $A \in \tau_{\mathcal{M}_{R_{T^*}}}$; i.e. Let $\mathcal{M}_{R_{T^*}^r}(A) = A^*$. Then

$$A = \mathcal{M}_{R_{T^*}^r}^*(A) = (\bigvee_{y \in X} (A^*(y) \odot R_{T^*}^r(y, -)))^* \\ = \bigwedge_{y \in X} (A(y) \to \bigvee_{B \in \tau_{T^*}^{r^*}} (B(y) \odot B^*))$$

Since $\bigvee_{B \in \tau_{T^*}^{r*}}(B(y) \odot B^*) \in \tau_T^{r*}$ and $\bigwedge_{y \in X}(A(y) \to \bigvee_{B \in \tau_{T^*}^{r*}}(B(y) \odot B^*)) \in \tau_T^{r*}$, we have $A \in \tau_T^{r*}$. Hence $\tau_{\mathcal{M}_{R_{T^*}}} \subset \tau_T^{r*}$.

- (5) It is similarly proved as (4).
- (6) Let $A \in (\tau_T^{r*})^*$. Since $A \in \tau_T^{r*}$,

$$\begin{aligned} R_T^r(x,y) \odot A^*(x) &= \bigwedge_{B \in \tau_T^{r*}} (B(x) \to B(y)) \odot A^*(x) \\ &\leq (A^*(x) \to A^*(y)) \odot A^*(x) \leq A^*(y). \end{aligned}$$

Hence $\mathcal{M}_{R_T^r}(A) = A^*$; i.e. $A \in \tau_{\mathcal{M}_{R_T^r}}$. Thus $(\tau_T^{r*})^* \subset \tau_{\mathcal{M}_{R_T^r}}$. Let $A \in \tau_{\mathcal{M}_{R_T^r}}$; i.e. $\mathcal{M}_{R_T^r}(A) = A^*$. Then

$$A = \mathcal{M}_{R_T^r}^*(A) = (\bigvee_{y \in X} (A(y) \odot R_T^r(y, -)))^*$$

= $\bigwedge_{y \in X} (A^*(y) \to \bigvee_{B \in \tau_T^{r*}} (B(y) \odot B^*))$

Since $\bigvee_{B \in \tau_T^{r*}}(B(y) \odot B^*) \in (\tau_T^{r*})^*$ and $\bigwedge_{y \in X}(A^*(y) \to \bigvee_{B \in \tau_T^{r*}}(B(y) \odot B^*)) \in (\tau_T^{r*})^*$, we have $A \in (\tau_T^{r*})^*$. Hence $(\tau_T^{r*})^* = \tau_{\mathcal{M}_{R_T^r}}$.

(7) For each $A \in L^X$ with $A^* \leq A_i$, $\mathbf{T}(A_i) \geq r^*$, since $A_i \in \tau_T^{r*} = \tau_{\mathcal{M}_{R_{r*}}}$, then

$$\bigwedge_{i} A_{i} \leq \mathcal{M}_{R_{T^{*}}^{r}}(\bigvee_{i} A_{i}^{*}) \leq A_{i} = \mathcal{M}_{R_{T^{*}}^{r}}(A_{i}^{*})$$

So, $\mathcal{M}_{R_{T^*}^r}(\bigvee_i A_i^*) = \bigwedge_i A_i$. Since $A \ge \bigvee A_i^*$,

$$\mathcal{M}_{R_{T^*}^r}(A) \le \mathcal{M}_{R_{T^*}^r}(\bigvee_i A_i^*) = \bigwedge_i A_i = \bigwedge \{A_i \mid A^* \le A_i, \ \mathbf{T}(A_i) \ge r^* \}.$$

Since $\mathcal{M}_{R_{T^*}^r}(\mathcal{M}_{R_{T^*}^r}^*(A)) = \mathcal{M}_{R_{T^*}^r}(A) \geq A^*$ and $\mathcal{M}_{R_{T^*}^r}(A) \in \tau_{\mathcal{M}_{R_{T^*}^r}} = \tau_T^{r^*}$. So,, $\bigwedge \{A_i \mid A^* \leq A_i, \ \mathbf{T}(A_i) \geq r^*\} \leq \mathcal{M}_{R_{T^*}^r}(A)$. Hence $\bigwedge \{A_i \mid A^* \leq A_i, \ \mathbf{T}(A_i) \geq r^*\} = \mathcal{M}_{R_{T^*}^r}(A)$ for all $A \in L^X$ and $r \in L$.

- (8) It is proved in a similar way as (7).
- (9) Let $\mathcal{M}_{R_{\pi}^{r_i}}(A) = B$ for all $i \in \Gamma \neq \emptyset$. Since

$$\begin{split} \mathcal{M}_{R_T^{r_i}}(A) &= \bigvee_{x \in X} (A^*(x) \odot R_T^{r_i}(x, -)) \\ &= \bigvee_{x \in X} (A^*(x) \odot \bigwedge_{D \in \tau_T^{r_i^*}} (D(x) \to D)) \in \tau_T^{r_i^*} \end{split}$$

 $\mathbf{T}(B) = \mathbf{T}(\mathcal{M}_{R_T^{r_i}}(A)) \geq r_i^*, \text{ then } \mathbf{T}(B) \geq \bigvee_{i \in \Gamma} r_i^* = (\bigwedge_{i \in \Gamma} r_i)^* = s^* \text{ where } s = \bigwedge_{i \in \Gamma} r_i. \text{ Since } B^* \in (\tau_T^{s^*})^* = \tau_{\mathcal{M}_{R_T^s}}, \text{ then } \mathcal{M}_{R_T^s}(B^*) = B = \mathcal{M}_{R_T^{r_i}}(A) \geq A^*. \text{ So,} A \geq \mathcal{M}_{R_T^{s_n}}(B^*) = B^*. \text{ Thus}$

$$\mathcal{M}_{R_T^s}(A) \le \mathcal{M}_{R_T^s}(\mathcal{M}_{R_T^s}^*(B^*) = \mathcal{M}_{R_T^s}(B^*) = B.$$

Since $s \le r_i$, $\mathcal{M}_{R_T^s}(A) \ge \mathcal{M}_{R_T^{r_i}}(A) = B.$ Thus $\mathcal{M}_{R_T^s}(A) = B.$

Theorem 3.3. Let \mathbf{T} be an Alexandorv fuzzy topology on X. We have the following properties.

(1) Define $\mathbf{T}_{M_T}: L^X \to L$ as

$$\mathbf{T}_{M_T}(A) = \bigvee \{ r_i^* \in L \mid \mathcal{M}_{R_T^{r_i}}(A) = A^* \}.$$

Then $\mathbf{T}_{M_T} = \mathbf{T}^*$ is an Alexandrov fuzzy topology on X.

(2) Define $\mathbf{T}_{M_{T^*}}: L^X \to L$ as

$$\mathbf{T}_{M_{T^*}}(A) = \bigvee \{ r_i^* \in L \mid \mathcal{M}_{R_T^{-r_i}}(A) = A^* \}$$

Then $\mathbf{T}_{M_{T^*}} = \mathbf{T}$ is an Alexandrov fuzzy topology on X.

- (3) $e_{L^X}(\mathcal{M}_{R^r_T}(A), B) = e_{L^X}(\mathcal{M}_{R^r_{T^*}}(B), A)$ for all $A, B \in L^X$.
- (4) There exists an Alexandrov fuzzy topology \mathbf{T}^r such that

$$\mathbf{T}^{r}(A) = e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(A), A^{*}).$$

If $r \leq s$, then $\mathbf{T}^r \leq \mathbf{T}^s$ for all $A \in L^X$.

(5) There exists an Alexandrov fuzzy topology \mathbf{T}^{*r} such that

$$\mathbf{T}^{*r}(A) = e_{L^X}(\mathcal{M}_{R_T^{-r}}(A), A^*)$$

Moreover, $\mathbf{T}^{*r}(A) = \mathbf{T}^{r}(A^{*})$ for all $A \in L^{X}$. If $r \leq s$, then $\mathbf{T}^{*r} \leq \mathbf{T}^{*s}$ for all $A \in L^{X}$.

(6) Define $\mathbf{T}_M : L^X \to L$ as

$$\mathbf{\Gamma}_M(A) = \bigvee \{ r^* \in L \mid \mathbf{T}^r(A) = \top \}.$$

Then $\mathbf{T}_M = \mathbf{T}^* = \mathbf{T}_{M_T}$ is an Alexandrov fuzzy topology on X. (7) Define $\mathbf{T}_{M^*} : L^X \to L$ as

$$\mathbf{T}_{M^*}(A) = \bigvee \{ r^* \in L \mid \mathbf{T}^{*r}(A) = \top \}.$$

Then $\mathbf{T}_{M^*} = \mathbf{T} = \mathbf{T}_{M_{T^*}}$ is an Alexandrov fuzzy topology on X.

Proof. (1) We only show that $\mathbf{T}_{M_T} = \mathbf{T}^*$. Let $\mathcal{M}_{R_T^{r_i}}(A) = A^*$. Then $A \in \tau_{\mathcal{M}_{R_T^{r_i}}} = (\tau_T^{r*})^*$ from Theorem 3.3.(6). So, $\mathbf{T}^*(A) = \mathbf{T}(A^*) = \mathbf{T}(\mathcal{M}_{R_T^{r_i}}(A)) \ge r_i^*$. Thus,

$$\mathbf{T}_{M_T}(A) = \bigvee \{ r_i^* \in L \mid \mathcal{M}_{R_T^{r_i}}(A) = A^* \} \le \mathbf{T}^*(A)$$

Since $\mathbf{T}^*(A) \ge (\mathbf{T}(A))^*$, then $\tau_{T^*}^{s*} = \tau_{\mathcal{M}_{R_T^s}}$ with $s = \mathbf{T}(A)$. Thus,

$$\mathbf{T}_{M_T}(A) = \bigvee \{ r_i^* \in L \mid \mathcal{M}_{R_T^{r_i}}(A) = A^* \} \ge s^* = \mathbf{T}^*(A).$$

Hence $\mathbf{T}_{M_T} = \mathbf{T}^*$.

$$e_{L^{X}}(\mathcal{M}_{R_{T}^{r}}(A), B) = \bigwedge_{y \in X}(\mathcal{M}_{R_{T}^{r}}(A)(y) \to B(y))$$

$$= \bigwedge_{y \in X}(\bigvee_{x \in X}(A^{*}(x) \odot R_{T}^{r}(x, y)) \to B(y))$$

$$= \bigwedge_{y \in X}\bigwedge_{x \in X}(R_{T}^{r}(x, y) \to (A^{*}(x) \to B(y)))$$

$$= \bigwedge_{y \in X}\bigwedge_{x \in X}(R_{T}^{r}(x, y) \to (B^{*}(y) \to A(x)))$$

$$= \bigwedge_{x \in X}(\bigvee_{y \in X}(B^{*}(y) \odot R_{T}^{r}(x, y)) \to A(x))$$

$$= e_{L^{X}}(\mathcal{M}_{R_{T}^{-r}}(B), A)$$

(4) (T1) Since $\mathcal{M}_{R_T^r}(\alpha_X)(y) = \bigvee_{x \in X} (\alpha_X(x) \odot R_T^r(x, y)) = \alpha \odot \bigvee_{x \in X} R_T^r(x, y) = \alpha$, $\mathbf{T}^r(\alpha_X) = e_{L^X}(\mathcal{M}_{R_T^r}(\alpha_X), \alpha_X) = \top$. (T2) Since $\mathcal{M}_{R_T^r}(\bigvee_{i \in \Gamma} A_i) \leq \bigwedge_{i \in \Gamma} \mathcal{M}_{R_T^r}(A_i)$, we have

$$\begin{aligned} \mathbf{T}^{r}(\bigvee_{i\in\Gamma}A_{i}) &= e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(\bigvee_{i\in\Gamma}A_{i}), (\bigvee_{i\in\Gamma}A_{i})^{*}) \\ &\geq e_{L^{X}}(\bigwedge_{i\in\Gamma}\mathcal{M}_{R^{r}_{T}}(A_{i}), \bigwedge_{i\in\Gamma}A^{*}_{i}) \\ &\geq \bigwedge_{i\in\Gamma}e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(A_{i}), A_{i}) = \bigwedge_{i\in\Gamma}\mathbf{T}^{r}(A_{i}) \end{aligned}$$

$$\mathbf{T}^{r}(\bigwedge_{i\in\Gamma}A_{i}) = e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(\bigwedge_{i\in\Gamma}A_{i}), (\bigwedge_{i\in\Gamma}A_{i})^{*})$$

= $e_{L^{X}}(\bigvee_{i\in\Gamma}\mathcal{M}_{R^{r}_{T}}(A_{i}), \bigvee_{i\in\Gamma}A_{i}^{*})$
 $\geq \bigwedge_{i\in\Gamma}e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(A_{i}), A_{i}^{*}) = \bigwedge_{i\in\Gamma}\mathbf{T}^{r}(A_{i})$

(T3) Since $\alpha \odot \mathcal{M}_{R_T^r}(\alpha \odot A) = \mathcal{M}_{R_T^r}(\alpha \to (\alpha \odot A)) \leq \mathcal{M}_{R_T^r}(A)$, then $\mathcal{M}_{R_T^r}(\alpha \odot A) \leq \alpha \to \mathcal{M}_{R_T^r}(A)$. Thus

$$\mathbf{T}^{r}(\alpha \odot A) = e_{L^{X}}(\mathcal{M}_{R_{T}^{r}}(\alpha \odot A), (\alpha \odot A)^{*})$$

$$\geq e_{L^{X}}(\alpha \to \mathcal{M}_{R_{T}^{r}}(A), \alpha \to A^{*})$$

$$\geq e_{L^{X}}(\mathcal{M}_{R_{T}^{r}}(A), A^{*}) = \mathbf{T}^{r}(A)$$

(T4)

$$\mathbf{T}^{r}(\alpha \to A) = e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(\alpha \to A), (\alpha \to A)^{*})$$

= $e_{L^{X}}(\alpha \odot \mathcal{M}_{R^{r}_{T}}(A), \alpha \odot A^{*})$
 $\geq e_{L^{X}}(\mathcal{M}_{R^{r}_{T}}(A), A^{*}) = \mathbf{T}^{r}(A)$

Hence \mathbf{T}^r is an Alexandrov fuzzy topology. Since $\mathcal{M}_{R_T^s} \leq \mathcal{M}_{R_T^r}$ for $r \leq s$, $\mathbf{T}^s(A) = e_{L^x}(\mathcal{M}_{R_T^s}(A), A^*) \geq e_{L^x}(\mathcal{M}_{R_T^r}(A), A^*) = \mathbf{T}^r(A)$.

(5) From a similar method as (4), \mathbf{T}^{*r} is an Alexandrov fuzzy topology. By (3), $\mathbf{T}^{r}(A^{*}) = e_{L^{X}}(\mathcal{M}_{R_{T}^{r}}(A^{*}), A) = e_{L^{X}}(\mathcal{M}_{R_{T^{*}}^{r}}(A), A^{*}) = \mathbf{T}^{*r}(A)$ for all $A \in L^{X}$. (6) Since $\mathbf{T}^{r}(A) = e_{L^{X}}(\mathcal{M}_{R_{T}^{r}}(A), A^{*}) = \top$ iff $A^{*} = \mathcal{M}_{R_{T}^{r}}(A)$, by (9),

$$\begin{aligned} \mathbf{T}_M(A) &= \bigvee \{ r^* \in L \mid \mathbf{T}^r(A) = \top \} \\ &= \bigvee \{ r^* \in L \mid \mathcal{M}_{R_T^r}(A) = A^* \} \\ &= \mathbf{T}_{M_T}(A) = \mathbf{T}^*(A). \end{aligned}$$

(2) and (7) are similarly proved as (1) and (6), respectively.

Example 3.4. Let $(L = [0, 1], \odot, \rightarrow, *)$ be a complete residuated lattice with a strong negation.

(1) Let $X = \{x, y, z\}$ be a set. Define a map $\mathbf{T} : [0, 1]^X \to [0, 1]$ as

$$\mathbf{T}(A) = A(x) \to A(z).$$

Trivially, $\mathbf{T}(\alpha_X) = 1$

Since $\alpha \odot A(x) \to \alpha \odot A(z) \ge A(x) \to A(z)$ from Lemma 2.4 (14), $\mathbf{T}(\alpha \odot A) \ge \mathbf{T}(A)$. Since $(\alpha \to A(x)) \to (\alpha \to A(z)) \ge A(x) \to A(z)$ from Lemma 2.4 (10), $\mathbf{T}(\alpha \to A) \ge \mathbf{T}(A)$. By Lemma 2.4 (8), $\mathbf{T}(\bigvee_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i)$ and $\mathbf{T}(\bigwedge_{i\in\Gamma} A_i) \ge \bigwedge_{i\in\Gamma} \mathbf{T}(A_i)$. Hence **T** is an Alexandrov fuzzy topology.

If $\mathbf{T}(A) = A(x) \to A(z) \ge r^*$, then $A(z) \ge A(x) \odot r^*$. Put A(x) = 1, A(y) = 0. So, $R_T^r(x, y) = \bigwedge \{A(x) \to A(y) \mid \mathbf{T}(A) \ge r^*\} = 0$ and $R_T^r(x, z) = \bigwedge \{A(x) \to A(z) \mid x < 0\}$.

 $\mathbf{T}(A) \ge r^* \} = r^*$, similarly, we can obtain

$$\begin{pmatrix} R_T^r(x,x) = 1 & R_T^r(x,y) = 0 & R_T^r(x,z) = r^* \\ R_T^r(y,x) = 0 & R_T^r(y,y) = 1 & R_T^r(y,z) = 0 \\ R_T^r(z,x) = 0 & R_T^r(z,y) = 0 & R_T^r(z,z) = 1 \end{pmatrix}$$

By Theorem 3.2(3), we obtain $\mathcal{M}_{R_T^r}(A)(y) = \bigvee_{x \in X} (A^*(x) \odot R_T^r(x, y))$ such that

$$\mathcal{M}_{R_T^r}(A) = (A^*(x), A^*(y), A^*(z) \lor (A^*(x) \odot r^*))$$

If $A^*(x) \odot r^* \leq A^*(z)$, then $\mathcal{M}_{R_T^r}(A) = A^*$. Thus $A \in \tau_{\mathcal{M}_{R_T^r}}$. Moreover, since $\mathbf{T}^*(A) = A^*(x) \to A^*(z) \geq r^*$ iff $A^*(z) \geq A^*(x) \odot r^*$, $A \in \tau_{T^*}^{r^*}$ iff $A \in \tau_{\mathcal{M}_{R_T^r}}$. So, $\tau_{T^*}^{r^*} = \tau_{\mathcal{M}_{R_T^r}}$. From Theorem 3.3(1), we have

$$\mathbf{T}_{M_T}(A) = \bigvee \{ r^* \in L \mid \mathcal{M}_{R_T^r}(A) = A \}$$

= $A^*(x) \to A^*(z) = \mathbf{T}(A^*) = \mathbf{T}^*(A)$

Moreover, we obtain

$$\begin{aligned} \mathbf{T}^{r}(A) &= \bigwedge_{x \in X} (\mathcal{M}_{R^{r}_{T}}(A)(x) \to A^{*}(x)) \\ &= (A^{*}(x) \odot r^{*}) \to A^{*}(z) = r^{*} \to (A^{*}(x) \to A^{*}(z)). \\ \mathbf{T}_{M}(A) &= \bigvee \{r^{*} \in L \mid \mathbf{T}^{r}(A) = 1\} \\ &= A^{*}(x) \to A^{*}(z). \end{aligned}$$

Hence $\mathbf{T}_M = \mathbf{T}_{M_T} = \mathbf{T}^*$.

$$\mathcal{M}_{R_T^r}(1_x^*)(z) = \bigwedge \{ B(z) \mid B \ge 1_x, \ \mathbf{T}(B) \ge r^* \}$$

Since B(x) = 1 and $\mathbf{T}(B) = 1 \to B(z) = B(z) \ge r^*$, then $\mathcal{M}_{R_T^r}(1_x^*)(z) = r^*$.

$$\mathcal{M}_{R_T^r}(1_x^*)(x) = \bigwedge \{B(x) \mid B \ge 1_x, \ \mathbf{T}(B) \ge r^*\} = 1$$
$$\mathcal{M}_{R_T^r}(1_x^*)(y) = \bigwedge \{B(y) \mid B \ge 1_x, \ \mathbf{T}(B) \ge r^*\} = 0$$
$$\mathcal{M}_{R_T^r}(1_x^*)(x) = \bigwedge \{B(x) \mid B \ge 1_z, \ \mathbf{T}(B) \ge r^*\}$$

Since B(z) = 1 and $\mathbf{T}(B) = B(x) \to 1 = 1$, then $\mathcal{M}_{R_T^r}(1_z^*)(x) = 0$.

$$\begin{pmatrix} \mathcal{M}_{R_T^r}(1_x^*)(x) = 1 & \mathcal{M}_{R_T^r}(1_x^*)(y) = 0 & \mathcal{M}_{R_T^r}(1_x^*)(z) = r^* \\ \mathcal{M}_{R_T^r}(1_y^*)(x) = 0 & \mathcal{M}_{R_T^r}(1_y^*)(y) = 1 & \mathcal{M}_{R_T^r}(1_y^*)(z) = 0 \\ \mathcal{M}_{R_T^r}(1_z^*)(x) = 0 & \mathcal{M}_{R_T^r}(1_z^*)(y) = 0 & \mathcal{M}_{R_T^r}(1_z^*)(z) = 1 \end{pmatrix}$$

Then $R_T^r(x, y) = \mathcal{M}_{R_T^r}(1_x^*)(y).$

(2) By (1), we obtain a map $\mathbf{T}^* : [0,1]^Y \to [0,1]$ as

$$\mathbf{T}^*(A) = A^*(x) \to A^*(z) = A(z) \to A(x).$$

Since $\mathbf{T}^{*}(A) = A(z) \to A(x) \ge r^{*}$, then $A(x) \ge A(z) \odot r^{*}$. Put A(z) = 1, A(y) = 0. So, $R_{T^{*}}^{r}(z, y) = \bigwedge \{A(z) \to A(y) \mid \mathbf{T}^{*}(A) \ge r^{*}\} = 0$ and $R_{T^{*}}^{r}(z, x) = \bigwedge \{A(z) \to A(x) \mid \mathbf{T}(A) \ge r^{*}\} = r^{*}$

$$\left(\begin{array}{ccc} R_{T^*}^r(x,x) = 1 & R_{T^*}^r(x,y) = 0 & R_{T^*}^r(x,z) = 0 \\ R_{T^*}^r(y,x) = 0 & R_{T^*}^r(y,y) = 1 & R_{T^*}^r(y,z) = 0 \\ R_{T^*}^r(z,x) = r^* & R_{T^*}^r(z,y) = 0 & R_{T^*}^r(z,z) = 1 \end{array} \right)$$

Moreover, $R_{T^*}^r(x,y) = R_T^{-r}(x,y) = R_T^r(y,x)$ for all $x, y \in X$.

$$\mathcal{M}_{R_{T^*}^r}(A)(y) = \bigvee_{x \in X} (A(x) \odot R_{T^*}^r(x, y)).$$
$$\mathcal{M}_{R_{T^*}^r}(A) = (A^*(x) \lor (A^*(z) \odot r^*), A^*(y), A^*(z))$$

If $A^*(z) \odot r^* \leq A^*(x)$, then $\mathcal{M}_{R^r_{T^*}}(A) = A^*$. If $\mathcal{M}_{R^r_{T^*}}(A) = A^*$, then $A^*(z) \odot r^* \leq A^*(z)$. Moreover, since $\mathbf{T}(A) = A(x) \to A(z) \geq r^*$ iff $A^*(z) \odot r^* \leq A^*(z)$, $A \in \tau^{r^*}_T$ iff $A \in \tau_{\mathcal{M}_{R^r_{T^*}}}$. Thus

$$\begin{aligned} \mathbf{T}_{M_{T^*}}(A) &= \bigvee \{ r^* \in L \mid \mathcal{M}_{R^r_{T^*}}(A) = A \} \\ &= A^*(z) \to A^*(x) = \mathbf{T}(A) = A(x) \to A(z). \end{aligned}$$

Moreover, we obtain

$$\begin{aligned} \mathbf{T}^{*r}(A) &= \bigwedge_{x \in X} (\mathcal{M}_{R^r_{T^*}}(A)(x) \to A(x)) \\ &= (A^*(z) \odot r^*) \to A^*(x) = r^* \to (A^*(z) \to A^*(x)). \\ \mathbf{T}_{M^*}(A) &= \bigvee \{r^* \in L \mid \mathbf{T}^{*r}(A) = 1\} \\ &= A^*(z) \to A^*(x) = \mathbf{T}(A). \end{aligned}$$

Hence $\mathbf{T}_{M^*} = \mathbf{T}_{M_{T^*}} = \mathbf{T}$.

$$\mathcal{M}_{R_{T^*}^r}(1_x^*)(z) = \bigwedge \{B(z) \mid B \ge 1_x, \ \mathbf{T}^*(B) \ge r^*\}$$

Since $B(x) = 1$ and $\mathbf{T}^*(B) = B(z) \to 1 = 1$, then $\mathcal{M}_{R_{T^*}^r}(1_x^*)(z) = 0$.
$$\mathcal{M}_{R_{T^*}^r}(1_z^*)(y) = \bigwedge \{B(y) \in L^X \mid B \ge 1_z, \ \mathbf{T}^*(B) \ge r^*\} = 0$$

$$\mathcal{M}_{R_{T^*}^r}(1_y^*)(y) = \bigwedge \{B(y) \in L^X \mid B \ge 1_y, \ \mathbf{T}^*(B) \ge r^*\} = 1$$

$$\mathcal{M}_{R_{T^*}^r}(1_z^*)(x) = \bigwedge \{B(x) \in L^X \mid B \ge 1_z, \ \mathbf{T}^*(B) \ge r^*\}$$

Since B(z) = 1 and $\mathbf{T}^*(B) = 1 \to B(x) = B(x) \ge r^*$, then $B(x) \ge r^*$. We have $\mathcal{M}_{R^r_{T^*}}(1^*_z)(x) = r^*$.

$$\begin{pmatrix} \mathcal{M}_{R_{T^*}^r}(1_x^*)(x) = 1 & \mathcal{M}_{R_{T^*}^r}(1_x^*)(y) = 0 & \mathcal{M}_{R_{T^*}^r}(1_x^*)(z) = 0 \\ \mathcal{M}_{R_{T^*}^r}(1_y^*)(x) = 0 & \mathcal{M}_{R_{T^*}^r}(1_y^*)(y) = 1 & \mathcal{M}_{R_{T^*}^r}(1_y^*)(z) = 0 \\ \mathcal{M}_{R_{T^*}^r}(1_z^*)(x) = r^* & \mathcal{M}_{R_{T^*}^r}(1_z^*)(y) = 0 & \mathcal{M}_{R_{T^*}^r}(1_z^*)(z) = 1 \end{pmatrix}$$

Then $R_{T^*}^r(x,y) = \mathcal{M}_{R_{T^*}^r}(1^*_x)(y).$

(3) Let $(L = [0, 1], \odot, \rightarrow, *)$ be a complete residuated lattice with a strong negation defined by, for each $n \in N$,

$$x \odot y = ((x^n + y^n - 1) \lor 0)^{\frac{1}{n}}, \ x \to y = (1 - x^n + y^n)^{\frac{1}{n}} \land 1, \ x^* = (1 - x^n)^{\frac{1}{n}}.$$

By (1) and (2), we obtain

$$\begin{split} \mathbf{T}(A) &= (1 - A(x)^n + A(z)^n)^{\frac{1}{n}} \wedge 1, \ \mathbf{T}^*(A) = (1 - A(z)^n + A(x)^n)^{\frac{1}{n}} \wedge 1. \\ R_T^r &= \begin{pmatrix} 1 & 0 & (1 - r^n)^{\frac{1}{n}} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R_{T^*}^r = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ (1 - r^n)^{\frac{1}{n}} & 0 & 1 \end{pmatrix} \\ \mathcal{M}_{R_T^r}(A) &= (A^*(x), A^*(y), A^*(z) \lor (((A^*(x))^n - r^n) \lor 0)^{\frac{1}{n}}) \\ \mathcal{M}_{R_{T^*}^r}(A) &= (A^*(x) \lor (((A^*(z))^n - r^n) \lor 0)^{\frac{1}{n}}, A^*(y), A^*(z)) \\ \text{Since } \mathbf{T}(A) &= (1 - A(x)^n + A(z)^n)^{\frac{1}{n}} \wedge 1 \ge (1 - x^n)^{\frac{1}{n}}, \text{ we have} \\ \tau_T^{r^*} &= \tau_{\mathcal{M}_{R_{T^*}}} &= \{A \in L^X \mid A^n(x) - A^n(z) \le r^n\} \\ \tau_T^{r^*} &= \tau_{\mathcal{M}_{R_T^r}} &= \{A \in L^X \mid A^n(z) - A^n(x) \le r^n\}. \end{split}$$

$$\mathbf{T}^{r}(A) = (A^{*}(x) \odot r^{*}) \to A^{*}(z) = (r^{n} - (A^{*}(x))^{n} + (A^{*}(z))^{n})^{\frac{1}{n}} \wedge 1$$

$$\mathbf{T}^{*r}(A) = (A(z) \odot r^{*}) \to A(x) = (r^{n} - (A^{*}(z))^{n} + (A^{*}(x))^{n})^{\frac{1}{n}} \wedge 1.$$

References

- 1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
- P. Hájek: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.
- U. Höhle & S.E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series 3. Kluwer Academic Publishers, Boston, 1999.
- Fang Jinming: I-fuzzy Alexandrov topologies and specialization orders. Fuzzy Sets and Systems 158 (2007), 2359-2374.
- 5. Y.C. Kim: Alexandrov L-topologies and L-join meet approximation operators. International Journal of Pure and Applied Mathematics. **91** (2014), no. 1, 113-129.
- H. Lai & D. Zhang: Fuzzy preorder and fuzzy topology. Fuzzy Sets and Systems 157 (2006), 1865-1885.
- Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory. Int. J. Approx. Reasoning 50 (2009), 695-707.
- 8. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356.

Yong Chan Kim

- 9. ____: Rough probability. Bull. Pol. Acad. Sci. Math. 32 (1984), 607-615.
- A.M. Radzikowska & E.E. Kerre: A comparative study of fuzy rough sets. *Fuzzy Sets and Systems* 126 (2002), 137-155.
- 11. Y.H. She & G.J. Wang: An axiomatic approach of fuzzy rough sets based on residuated lattices. *Computers and Mathematics with Applications* **58** (2009), 189-201.
- 12. Zhen Ming Ma & Bao Qing Hu: Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets. *Information Sciences* **218** (2013), 194-204.

DEPARTMENT OF MATHEMATICS, GANGNEUNG-WONJU NATIONAL UNIVERSITY, GANGNEUNG 210-702, KOREA

 $Email \ address: \ \texttt{yck}\texttt{@gwnu.ac.kr}$