• Title/Summary/Keyword: preliminary reinforcement

Search Result 61, Processing Time 0.026 seconds

A study about determination of preliminary design & minimum reinforcement ratios

  • KOC, Varol;EMIROGLU, Yusuf
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.673-692
    • /
    • 2016
  • In the standards, minimum reinforcement ratios are presented as the least reinforcement ratios that bearing elements should have in a way to include all systems and in general. However, naturally these general minimum ratios might be presented as being lower than the normally required reinforcement ratios by criteria such as system size, bearing system arrangement, section situation and distributions of the elements and earthquake effect. In this case, minimum reinforcement ratios may remain as meaningless restrictions. Then grouping the criterion that might affect reinforcement ratios according to certain parameters and creating minimum reinforcement ratios regarding preliminary design will provide ease and safety during the project designing. Moreover, it will enable fast and simple examinations in the beginning of project control and evaluation process. By means of the data which could be defined as "preliminary design & minimum reinforcement ratios", a more realistic and safe restriction compared to general minimum reinforcement ratios could be presented. As a result of numerous comprehensive studies, reinforcement ratios to include all certain systems might be obtained. Today, thanks to the development level of finite elements programs which can make reinforced concrete modelling, with the studies that are impossible to carry out beforehand, this deficiency in the minimum reinforcement ratios in the standarts may at least be partially made up with the advisory regulation of preliminary design & minimum reinforcement ratios. As the structure of the system to be examined and the diversity of the parameters range from the specific to the general, preliminary design & minimum reinforcement ratios will approximate to general minimum reinforcement ratios in real terms. By focusing on a more specific system structure and diversity of the parameters, preliminary design and even design reinforcement ratios will be approximated. In this preliminary study, a route between these two extremes was attempted to be followed. Today, it is possible to determine suggested practical ratios for project designs through carrying out numerous studies.

A Comparative Analysis on the Work Importance of Customized and Expansion Remodeling Project (맞춤형 및 증축형 리모델링 공사의 업무중요도 비교·분석)

  • Kim, Min-Jae;Son, Chang-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.66-67
    • /
    • 2015
  • This study compared and analyzed the job importance that site managers perceived by dividing the study scope into customized and expansion remodeling projects and deriving the job descriptions from previous studies. As a result, a total of 7 construction stages and 53 job descriptions were derived. As job importance in customized remodeling projects, removal and demolition works were the most important, followed by preliminary survey, and repair and reinforcement works. In addition, as job importance in expansion remodeling projects, preliminary survey is the most important, followed by civil engineering work, and repair and reinforcement works. It is considered that the job importance of the remodeling projects derived in this study will contribute to improving their job efficiency in the future.

  • PDF

A study on the police preliminary investigation for the protection of criminal victims (범죄피해자를 위한 경찰 초동수사에 대한 연구)

  • Park, Ho-Jung
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.1-11
    • /
    • 2012
  • In case of the crime occurrence preliminary investigation is very important. Police perform on-site first responders throuth the First Responders Manual and 112 information system. But recently the failure cases of preliminary investigation happened. Social criticism was castrated for the police that roundup succeeded but failed to protect the victims of crime. Avoiding these accidents, improvement of preliminary investigation is required. Accordingly local police personnel system improvement, improvement of reporting systems, Integration of 112 information and 119 information, improvement of seizure search regulations, victim care, crime response exercises reinforcement is required for the protection of criminal victims in preliminary investigation.

An Experimental Study of Reservoir Failure Phenomena According to Transitional Zone: Spillway Scour During Overflow (저수지 월류 시 여수토 접속부 세굴에 따른 붕괴 현상의 실험적 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Jeong, Jong-Woo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • This study is a preliminary investigation into the development of a construction method that will protect a reservoir even during over flows caused by severe flooding. Through hydraulic modeling tests, the destructive phenomena caused by spillway-junction scour during reservoir overflow were modeled, and the effects on the embankment during such an overflow and the spillway-junction movements are discussed. The reservoir destruction model used the Tanbu reservoir, located in Gangwondo Chuncheon-si Namsanmyeon (H=22 m, L=115 m), as the model reservoir and created an embankment with a 1/60 ratio. We review the spillway-junction safety factor during overflow and embankment movement following reinforcement measures for three different cases: no reinforcement, cemented sand and gravel (CSG) reinforcement and water-blocking sheet reinforcement. The results of this study confirmed that when the spillway-junction is exposed to soil, it is very vulnerable to overflow and that a water-blocking sheet or CSG reinforcement are very effective measures in preventing embankment destruction in the long-term period.

Soil-Reinforcement Interaction Determined by Extension Test (인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定))

  • Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The new technique has been used to determine the soil-reinforcement interaction. The testing apparatus is essentially a triaxial cell fitted with the capability to house a hollow cylinderical sample. A hollow cylinderical sand specimen with a concentrical layer of reinfarcing material sandwitched in the middle is used in this investigation. The reinforcement is fastened at the base. The hollow specimen can be viewed as a "unit sheet" of a soil-reinforcement composite system of infinite horizontal extent. Axial load as well as inner and outer chamber pressures can be applied to perform a test. The specimen is first subjected to an isotropic stress state corresponding to the overburden pressure. Next, an extension test by reducing the axial load is carried out. The specimen is "loaded" to failure by either the breakage of reinforcing material (tensile failure) or slippage which takes place at the soil-reinforcement interface (i.e. the overcoming of the bonding capacity). Since the reinforcement is fastened at its lower end to the base, any tendency of relative movement between the reinforcement and the sand during an extension test can induce tensile force in the reinforcement thus forming a "reversed pull-out" test condition. Preliminary test results have demonstrated positively of the new approach to test the soil-reinforcement interaction. Reinforcing elements of different extensibility were used to study the deformbility of reinforced soil. Furthermore, both the breakage and the pull-out modes of failure were observed.

  • PDF

A Case Study on Construction of Tunnel at Limestone Cavity Site (석회암공동 분포지역에서의 터널 시공사례)

  • Kim, Si-Kyeok;Kang, In-Seop;Kim, Yong-Ha;Yoon, Il-Byung;Moon, Hoon-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.66-75
    • /
    • 2006
  • As construction for road tunnel is increasing, various geotechnical conditions can be faced during the construction stage. Especially, if the tunnel is located in limestone area, many kinds of site investigations such as in-situ boring, electrical resistance survey, TSP(Tunnel Seismic Prediction) and etc., are conducted before and during the construction. By conducting these preliminary tests, location, size, and filling materials in limestone cavities can be approximately estimated. Once some cavities which can be harmful for tunnel safety are predicted, methods for ground reinforcement and tunnel excavation, corresponding those ground conditions, have to be established and verified by measurement data and numerical analysis. If necessary, invert lining should be also considered. In this paper, by studying some cases of tunnels constructed in limestone area, predicted problems during construction and rational countermeasures for those are presented.

  • PDF

A study on platform-based preliminary design guidelines associated with the behaviour of piles to adjacent tunnelling (터널근접시공에 의한 말뚝의 거동을 고려한 플랫폼 기반의 예비 설계 가이드라인에 대한 연구)

  • Jeon, Young-Jin;Lee, Gyu-Seol;Lee, Jae-Cheol;Batbuyan, Chinzorig;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.129-151
    • /
    • 2022
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of piles when the adjacent tunnelling passes underneath grouped piles with a reinforced pile cap. In the current study, the numerical analysis studied the computed results regarding the ground reinforcement condition between the tunnel and pile foundation. In addition, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the relative displacements have been thoroughly analysed, and the IoT platform based preliminary design guidelines were also presented. The pile head settlements of the nearest pile from the tunnel without the ground reinforcement increased by about 70% compared to the farthest pile from the tunnel with the maximum level of reinforcement. The quality management factor data of the piles were provided as API (Application Programming Interface) of various forms by the collection and refinement. Hence it has been shown that it would be important to provide the appropriate API by defining the each of data flow process when the data were created. The behaviour of the grouped piles with the pile cap, depending on the amount of ground reinforcement, has been extensively analysed, and the IoT platform regarding the quality management of piles has been suggested.

Development of Prediction Method for Behavior of Reinforced Very Soft Clay (표층보강 초연약지반 거동의 예측 방법 개발)

  • Lee, Jong-Sun;Lee, Chul-Ho;You, Seung-Kyong;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.482-491
    • /
    • 2009
  • In this study, the mechanical behavior of very soft ground that is reinforced on the surface has been investigated with the aid of a series of numerical analyses. Key material properties of each dredged soft ground, reinforcement and backfill sand mat have been parametrically estimated in the numerical analysis. Along with the result of the study previously performed, a series of in-situ loading conditions and settlement exerted by surface reinforcing operation by construction vehicles has been numerically simulated. These result have been used to evaluate the limit bearing capacity for the unreinforced and reinforced soft ground. Also, the results of the numerical analysis obtained in this research were compared with Yamanouchi's empirical correlation for the limit bearing capacity. Engineering charts listed in this paper for estimating the limit bearing capacity provide field engineers with preliminary design tool for surface reinforcement of very soft ground.

  • PDF

Seismic Performance Evaluation of Unreinforced Masonry Buildings Retrofitted by Strengthening External Walls (외부벽체 강도증진형 보강이 적용된 비보강 조적조 건물의 내진성능평가)

  • Seol, Yun Jeong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.