• 제목/요약/키워드: prediction error methods

검색결과 525건 처리시간 0.021초

전자산업에서 사용하는 화학물질의 독성예측을 위한 QSAR 접근법 (QSAR Approach for Toxicity Prediction of Chemicals Used in Electronics Industries)

  • 김지영;최광민;김관식;김동일
    • 한국환경보건학회지
    • /
    • 제40권2호
    • /
    • pp.105-113
    • /
    • 2014
  • Objectives: It is necessary to apply quantitative structure activity relationship (QSAR) for the various chemicals with insufficient toxicity data that are used in the workplace, based on the precautionary principle. This study aims to find application plan of QSAR software tool for predicting health hazards such as genetic toxicity, and carcinogenicity for some chemicals used in the electronics industries. Methods: Toxicity prediction of 21 chemicals such as 5-aminotetrazole, ethyl lactate, digallium trioxide, etc. used in electronics industries was assessed by Toxicity Prediction by Komputer Assisted Technology (TOPKAT). In order to identify the suitability and reliability of carcinogenicity prediction, 25 chemicals such as 4-aminobiphenyl, ethylene oxide, etc. which are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) were selected. Results: Among 21 chemicals, we obtained prediction results for 5 carcinogens, 8 non-carcinogens and 8 unpredictability chemicals. On the other hand, the carcinogenic potential of 5 carcinogens was found to be low by relevant research testing data and Oncologic TM tool. Seven of the 25 carcinogens (IARC Group 1) were wrongly predicted as non-carcinogens (false negative rate: 36.8%). We confirmed that the prediction error could be improved by combining genetic toxicity information such as mutagenicity. Conclusions: Some compounds, including inorganic chemicals and polymers, were still limited for applying toxicity prediction program. Carcinogenicity prediction may be further improved by conducting cross-validation of various toxicity prediction programs, or application of the theoretical molecular descriptors.

로렌쯔-95 모델을 이용한 앙상블 섭동 비교: 브레드벡터, 직교 브레드벡터와 앙상블 칼만 필터 (Comparison of Ensemble Perturbations using Lorenz-95 Model: Bred vectors, Orthogonal Bred vectors and Ensemble Transform Kalman Filter(ETKF))

  • 정관영;바커 데일;문선옥;전은희;이희상
    • 대기
    • /
    • 제17권3호
    • /
    • pp.217-230
    • /
    • 2007
  • Using the Lorenz-95 simple model, which can simulate many atmospheric characteristics, we compare the performance of ensemble strategies such as bred vectors, the bred vectors rotated (to be orthogonal to each bred member), and the Ensemble Transform Kalman Filter (ETKF). The performance metrics used are the RMSE of ensemble means, the ratio of RMS error of ensemble mean to the spread of ensemble, rank histograms to see if the ensemble member can well represent the true probability density function (pdf), and the distribution of eigen-values of the forecast ensemble, which can provide useful information on the independence of each member. In the meantime, the orthogonal bred vectors can achieve the considerable progress comparing the bred vectors in all aspects of RMSE, spread, and independence of members. When we rotate the bred vectors for orthogonalization, the improvement rate for the spread of ensemble is almost as double as that for RMS error of ensemble mean compared to the non-rotated bred vectors on a simple model. It appears that the result is consistent with the tentative test on the operational model in KMA. In conclusion, ETKF is superior to the other two methods in all terms of the assesment ways we used when it comes to ensemble prediction. But we cannot decide which perturbation strategy is better in aspect of the structure of the background error covariance. It appears that further studies on the best perturbation way for hybrid variational data assimilation to consider an error-of-the-day(EOTD) should be needed.

일차함수 활용문제의 해결을 위한 강의식, 모델링, 과제기반 표현변환 학습의 교수학적 효과 분석 (An Analysis of Teaching and Learning Methods Focusing on the Representation-Shift of the Functional Context)

  • 이종희;김부미
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권1호
    • /
    • pp.39-69
    • /
    • 2004
  • 본 연구에서는 학생들이 일차함수의 활용단원을 학습할 때 여러 현상을 해석하고 다양한 수학적 표현을 사용하여 모델로 만들어 문제해결과정에 이를 적용할 수 있도록, 학생들의 표현에 대한 이전 경험과 현상을 해석하기 위한 표현 방법을 효과적으로 연결하는 학습-지도 방법을 분석하였다. 본 연구는 일차함수를 학습한 8학년 학생들을 대상으로 일차함수 단원을 예측과제, 번역과제, 해석과제, 척도과제로 세분화하여 각각에 대한 학생들의 오류를 분석한 다음, 일차함수의 활용 단원을 교과서 위주의 강의식 표현변환 학습, 모델링 관점에서의 표현변환 학습과 과제기반 표현변환 학습을 실시하였다. 연구 결과, 강의식 학습 방법보다는 모델링 관점과 과제기반 학습이 표현변환의 유연한 연결성 및 일차함수에 대한 각 과제별 오류교정과 질적 함수에 대한 해석 능력에서 효과적이었다. 모델링 관점과 과제기반 학습의 경우는 모두 표현변환의 유연한 연결을 교수하는데 효과적이었으나, 질적 함수의 해석 능력에서는 모델링 관점의 학습이 보다 효과적이었다.

  • PDF

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

Prediction of fly ash concrete compressive strengths using soft computing techniques

  • Ramachandra, Rajeshwari;Mandal, Sukomal
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.83-94
    • /
    • 2020
  • The use of fly ash in modern-day concrete technology aiming sustainable constructions is on rapid rise. Fly ash, a spinoff from coal calcined thermal power plants with pozzolanic properties is used for cement replacement in concrete. Fly ash concrete is cost effective, which modifies and improves the fresh and hardened properties of concrete and additionally addresses the disposal and storage issues of fly ash. Soft computing techniques have gained attention in the civil engineering field which addresses the drawbacks of classical experimental and computational methods of determining the concrete compressive strength with varying percentages of fly ash. In this study, models based on soft computing techniques employed for the prediction of the compressive strengths of fly ash concrete are collected from literature. They are classified in a categorical way of concrete strengths such as control concrete, high strength concrete, high performance concrete, self-compacting concrete, and other concretes pertaining to the soft computing techniques usage. The performance of models in terms of statistical measures such as mean square error, root mean square error, coefficient of correlation, etc. has shown that soft computing techniques have potential applications for predicting the fly ash concrete compressive strengths.

신체계측을 이용한 각종 체지방량 추정식의 타당성 평가 (Validity of Various Anthropometric Equations for the Estimation of Relative Body Fat)

  • 김은경
    • Journal of Nutrition and Health
    • /
    • 제23권2호
    • /
    • pp.93-107
    • /
    • 1990
  • The purposes of this investigation were to determine the validity of various methods (available anthropometric equations and near-infrared light interactance) for estimating body fat and to develop multiple regression equations for the prediction of body fat. Thirty-eight healthy males(age: 20.87$\pm$7.17 yrs) and 12 females(19.58$\pm$2.19 yrs) underwent hydrostatic weighing to determine body fat. Anthropometric measurements were taken of height, weight, nin skinfolds and thirteen circumferences. The results obtained are summarized as follows: 1) Relative body fat determined by underwater weighing was 12.08$\pm$5.21% for the males and 17.97$\pm$5.75% for the females. 2) Circumference and skin fold that had the highest correlation with the body fat were waist girth in males and females(r=0.60, r=0.96, respectively), and subscapular in males(r=0.68) and triceps in females(r=0.96). 3) Corss-validation of 18 selected equations on males revealed total errors ranging from 3.76% to 5.06%. Among these equations, M3(Pollock et al.) demonstrated the least total error. Total error of estimation by near-infrared(NIR) was less than that of available anthropometric measurement equations. The results of the cross-validation of 12 equations on females revealed that F3(Sloan et al.) was clearly superior in accuracy of prediction. 4) Correlational analyses showed that estimation of body fat by NIR measurement seemed to be more closely associated with body fat determined by underwater weighing in women than men, in older subjects than younger ones, and in fatter subjects than leaner ones.

  • PDF

한국 최대 전력량 예측을 위한 통계모형 (Statistical Modeling for Forecasting Maximum Electricity Demand in Korea)

  • 윤상후;이영생;박정수
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.127-135
    • /
    • 2009
  • 한국의 경제규모가 꾸준히 커감에 따라 가정, 건물, 공장 등에서 필요로 하는 전력량이 지속적으로 증가하고 있다. 전력공급의 안정화를 위해서는 최대전력량보다 전력공급능력이 높아야 한다. 월별 최대전력량을 잘 설명할 수 있는 통계모형을 찾기 위해 Winters 모형, 분해 시계열모형, ARMA 모형, 설명 변수를 통해 추세성분과 계절성분을 교정한 모형을 살펴보았다. 모형의 예측력 비교 기준으로 모형적합으로부터 구한 RMSE와 MAPE가 사용되었다. 여름철 최대전력량을 예측하기 위해 평균기온과 열대야 일수를 설명 변수로 갖는 시계열 모형이 가장 우수하였다. 아울러 외부요인을 갖는 극단분포 모형을 이용한 분석을 시도하였다.

근적외선 반사도를 이용한 토양 유기물 함량 측정 (Measurement of Soil Organic Matter Using Near Infra-Red Reflectance)

  • 조성인;배영민;양희성;최상현
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.475-480
    • /
    • 2001
  • Sensing soil organic matter is crucial for precision farming and environment friendly agriculture. Near infra-red(NIR) was utilized to measure the soil organic matter. Multivariate calibration methods, including stepwise multiple linear regression(MLR), principal components recession(PCR) and partial least squares regression(PLS), were applied to soil spectral reflectance data to predict the organic matter content. The effect of soil particle size and water content was studied. The range of soil organic matter contents was from 0.5 to 11%. Near infrared (NIR) region from 700 to 2,500nm was applied. For uniform soil particle size, result had good correlation (R$\^$2/ = 0.984, standard error of prediction= 0.596). The effect of soil particle size could be eliminated with 1st order derivative of the NIR signal. However. moist soil had a little lower correlation. R$\^$2/ was 0.95 and standard error of prediction was 0.94% using the PLS method. The results showed the possibility of soil organic matter measurement using NIR reflectance on the field.

  • PDF

로버스트 추정을 이용한 다중 프로세서에서의 데이터 통신 예측 모델 (Data Communication Prediction Model in Multiprocessors based on Robust Estimation)

  • 전장환;이강우
    • 정보처리학회논문지A
    • /
    • 제12A권3호
    • /
    • pp.243-252
    • /
    • 2005
  • 본 논문에서는 최소제곱 추정기법과 로버스트 추정기법을 사용하여 다중 프로세서 시스템에서의 데이터 통신의 빈도를 모델링하는 방법을 제안한다. 몇 가지의 서로 다른 크기의 작은 입력 데이터들을 작업부하 프로그램에 부과하여 그때마다의 통신 빈도를 측정하고, 이 측정된 값들에 두 가지 통계적 추정기법을 순차적으로 적용함으로써 통신 빈도를 정확히 예측할 수 있는 모델을 구축하는 방법이다. 이 모델링 기법은 작업부하나 목표시스템의 구조적인 사양에 무관하게 입력 데이터의 크기에만 의존하므로 다양한 작업부하와 목표시스템에 대하여 그대로 적용할 수 있는 장점이 있다. 또한 목표시스템에서 작업부하의 알고리즘적 동적특성이 수학적인 공식으로 반영되므로 데이터 통신이외의 성능 데이터를 모델링하는 데에도 적용할 수 있다. 본 논문에서는 대표적인 다중 프로세서인 공유메모리 시스템에서 데이터 통신을 유발하는 핵심 요소인 캐시접근실패의 빈도에 대한 모델을 구하였으며, 12번의 실험 중 5번의 경우에는 $1\%$ 미만, 나머지 경우에는 $3\%$ 내외의 대단히 정확한 예측 오차율을 보였다.

움직임 벡터와 인트라 예측 모드를 이용한 디지털 비디오 스크램블링 방법 (Digital Video Scrambling Methods using Motion Vector and Intra Prediction Mode)

  • 안진행;전병우
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.133-142
    • /
    • 2005
  • 본 논문에서는 디지털 컨텐츠 보호 기술 중 하나인 두 가지 디지털 비디오 스크램블링 방법을 제안한다. 그 중 한 가지는 움직임 벡터를 이용하여 인터 블록을 왜곡하는 스크램블링 방법이며, 다른 한 가지는 H.264 비디오 압축 기술의 인트라 예측모드를 이용하여 인트라 블록을 왜곡하는 스크램블링 방법이다. 움직임 벡터를 이용한 스크램블링 방법은 움직임 벡터의 수평값과 수직값을 교환하는 것으로 MPEG-1, 2, 4, H.264와 같은 대부분의 비디오 압축 기술에 적용 가능하다. 인트라 예측 모드를 이용한 방법은 H.264 비디오 압축 기술의 특징인 인트라 예측 부호화를 이용한 것으로, 인트라 예측 부호화시 발생하는 인트라 예측 모드를 통상적인 복호화가 가능하며 비트율의 변화가 없는 범위 내에서 랜덤하게 변경하는 것이다. 두 가지 방법 모두 스크램블링으로 인한 압축 효율의 저하가 전혀 없으며, XOR과 같은 매우 간단한 연산만으로 구현이 가능하므로 계산량의 증가가 적다. 뿐만 아니라, 인트라 블록 스크램블링의 경우 인터 블록에 대한 직접적인 왜곡 없이 에러 전파 효과로 인해 간접적으로 인터 블록을 왜곡할 수 있는 장점을 갖고 있다. 본 논문에서는 이와 같은 두 가지 새로운 디지털 비디오 스크램블링 방법을 제안하고, 이에 대한 실험 결과를 통해 제안된 알고리듬의 효율성을 보인다.