
1. Introduction

Vessels located in a marine environment move in six degrees of 

freedom (6DOF). Among the 6DOF motions, the roll determines the 

boarding comfort, stability, and work environment of the passengers. 

Moreover, roll motions are associated with marine accidents such as 

ship overturn, which cause more material and human damage than ship 

engine failures. To prevent such marine accidents, there is a need for a 

process to identify the stability in waves in the ship design stage. As the 

stability of vessels is determined by the response amplitude operator 

(RAO) and wave energy spectrum of the floating body, it is critical to 

determine the RAOs of vessels. Existing methods to determine the 

RAO include experimental methods and computer analysis 

simulations. The determination of an RAO through experiments 

involves difficulties, owing to various constraints in the experimental 

model, equipment, and environment. To determine the RAO using 

computer simulations, the following three steps are required.

Step 1: A modeling process is conducted for the information of the 

vessel. This is a preliminary step for analysis and simulation, in which 

the shape information of the ship is generated.

Step 2: The vessel conditions are set. For example, the center of 

gravity and radius of gyration are input, considering the loading 

conditions and shape information of the vessel. 

Step 3: The motion responses are analyzed in the frequency domain. 

Then, the analysis results (such as the RAO per external force 

direction) can be obtained.

However, the shape information of vessels is not easy to obtain, and 

some small and medium vessels do not have detailed information (e.g., 

drawings). Furthermore, computer simulation methods have 

inefficient aspects, as the above three steps must be repeated when the 

shape of the vessel changes. In addition, users have different skill 

levels for the commercial tools used in simulation, affecting the 

reliability of the results. 

In view of the rising interest in artificial intelligence (AI)-related 

research in various fields, the shipbuilding and marine industry is also 

conducting research using AI techniques. Ham (2016) predicted lead 

times by considering the specifications and supply routes of fittings in 

shipyards using data mining techniques. Kim (2018) verified and 
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discussed prediction models for production lead times by considering 

the properties of blocks and pipes among the data of shipyards. In 

terms of ship operations, Park et al. (2004) and Lee et al. (2005) 

evaluated stability to disturbances during the navigation of specific 

vessels using a 3D panel method and researched a system for 

evaluating an optimal sea route by setting the kinematic phenomena of 

the hull (such as excessive rolling phenomenon) as variables. Mahfouz 

(2004) defined parameters related to a nonlinear roll to predict a 

nonlinear roll time series for vessels, and measured the accuracy using 

a cross-validation function and applying a regression algorithm. Kang 

et al. (2012) used artificial neural network (ANN) techniques to 

predict, in real time, the responses of floating bodies to nonlinear 

waves. Kim et al. (2018) predicted the roll motions of 9600TEU 

container ships in operation using navigation variables. Kim (2019) 

developed a fuel consumption rate prediction model based on ship 

operation data and created and verified a decision support model for 

abnormal conditions of equipment on sailing ships. Kim et al. (2019) 

tested seakeeping performance by using the RAO at various incident 

angles. Jeon (2019) developed a meta-model by combining three 

machine learning models to predict the fuel consumption of vessels 

and validated the AI model. 

Most studies combining the motions of vessels with AI techniques 

have investigated the optimal route, motion responses, and other topics 

regarding one specific vessel. However, this study aimed to predict the 

motion characteristics of specific vessels by learning the motion 

characteristics of barge-type ships with various specifications. First, 

information on barge-type ships registered with classification societies 

was collected. Then, the RAO data of each ship was generated using an 

in-house code, based on a 3D singularity distribution method. Thus, 

data sets of the specifications and RAOs were created for various 

barge-type ships. Using some of this data as training data, the RAOs of 

specific ships in the test data were predicted after a learning process. 

The ultimate goal of this study was to identify the roll RAOs of 

barge-type ships using AI techniques. The results of this study can 

provide a means for assessing the stability of various barge-type ships. 

Furthermore, the method developed in this study has the advantage of 

minimizing the modeling process for analyzing the RAO and the 

dependence on skill level for commercial tools.

2. Research Process 

2.1 Machine Learning
Machine learning can be defined as a science of programming 

computers to learn from data. As shown in Fig. 1, machine learning 

can be classified based on the existence or absence of labeled data, into 

supervised learning, unsupervised learning, and reinforcement 

learning. Among them, supervised learning consists of classification 

and regression depending on predictions from results. Unsupervised 

learning is a method of deriving a result by a computer alone, i.e., 

without human intervention. One representative example of 

unsupervised learning is clustering. Reinforcement learning is a 

learning method that reinforces actions in the direction of the current 

action or in the opposite direction, through reward or penalty. Thus, 

this learning method selects an action or measure that maximizes the 

reward for selectable actions, by recognizing the current condition. 

The present study used a supervised learning method (which provides 

an answer) from among the machine learning methods, and a 

regression method to predict the values. 

2.2 Perceptron
The human brain consists of combinations of neurons, and signals 

and information are communicated and learned through synapses 

interconnecting the neurons. A mathematical model of this process is 

called perceptron. Similar to the brain's learning principles, 

perceptrons also have the ability to solve problems by adjusting 

weights through learning. Fig. 2 shows conceptual diagrams of the 

human brain and perceptrons. The operation sequence of a perceptron 

is described below. However, single-layer perceptrons have difficulty 

Fig. 1 Machine learning classification
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in learning non-linear models, as there is only one activation function. 

(1) Input of training data (   ⋯  );

(2) Multiplication of the weights (   ⋯  ) and input value;

(3) Delivery of the sum of the multiplications to a net input function;

(4) Returning a “1” if the prediction data of the net input function is 

larger than the threshold of the activation function, or a “-1” if the 

former is smaller than the latter; and 

(5) Updating the weight in the direction that minimizes the prediction 

and observation data.

2.3 Multi-Layer Perceptron (MLP)
Fig. 3 shows a concept diagram of a multi-layer perceptron (MLP). 

An MLP consists of multiple hidden layers between the input and 

output layers to compensate for the above-mentioned disadvantages of 

the single-layer perceptron. The complexity of the neural network is 

determined by the number of hidden layers. An ANN with two or more 

hidden layers is generally called a deep neural network (DNN). The 

operation principle of an MLP is similar to that of a single-layer 

perceptron, and its sequence is as follows.

(1) Enter the training data (   ⋯  );

(2) Randomly set the weights of each layer (   ⋯  );

(3) Calculate the net input function value for each layer and the 

output value by the activation function;

(4) Update the weights until the difference between prediction and 

observation data by the activation function of the output layer becomes 

the tolerance; and 

(5) Finish learning when the defined number of learning iterations 

for the training data is reached. 

Fig. 3 Multi-Layer Perceptron concept

2.4 Data Collection
The length, breadth, and draft data of ships were collected from the 

specifications of barge-type ships registered with the Korea, Japan and 

Denmark-Germany register of shipping. In total, data were collected 

for 500 ships; ships with duplicate specifications were excluded from 

the data collection. In addition, eight input variables were generated 

for the learning model based on the collected ship data. The input 

variables were selected based on factors related to the roll motion, as 

shown in Table 1. The radius of gyration was set to 0.4 times the ship 

breadth, and the center of gravity was estimated under the assumption 

that the ship was on a free water surface.

Table 1 Input features

Features Description Range
L Length (m) 14 ~ 183 

B Breadth (m) 6 ~ 76 
D Draft (m) 1.24 ~ 6 
V Volume (m3) 169 ~ 89794
 Radius of Gyration (m) 2.4 ~ 30.4

 Mass moment of inertia of x-axis (kg·m2) 102193.7 ~ 8.67×109

 Restoring coefficient of x-axis (kg/s2) 62139.02 ~ 5.02×109

 Transverse metacenter height (m) 0.083075 ~ 85.4

2.5 Structure of Artificial Neural Network (ANN)
The learning model was created using the Python language, and the 

ANN was configured using the TensorFlow library. The hyperparameters 

Table 2 Hyper parameters

Parameter Value

Input layer neurons 8

Hidden layer
Hidden layer: Variable

Hidden layer neurons: Variable

Output layer neurons 20

Data ratio
 Training data: 80 %

Test data: 20 %

Learning rate 0.01

Epoch 10,000

Drop out 0.7

Batch size 80

Optimizer Adam

Activation function Sigmoid, Relu

    

Fig. 2 Neuron concepts (Left) & Perceptron concepts (Right)
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used in this learning model are listed in Table 2. In addition, the 

numbers of hidden layers and hidden layer neurons were set as variables 

in this study. To prevent the overfitting of the ANN, the effects of the 

input variables were set identically through a normalization process of 

the input variables, and the range of normalization was set from 0 to 1. 

In addition, to prevent overfitting owing to the increased number of 

features during learning, the features of the learning model were 

reduced by applying the drop-out technique. 

3. Learning Result and Discussion

3.1 Accuracy Assessment Indices
3.1.1 Random number change of the learning model

It was assumed that there would be a difference in the accuracy of 

the learning model depending on the training and test data, as data for a 

limited number of ships (500EA) was used. Thus, to consider various 

combinations of training and assessment data, the mean value of the 

accuracy was calculated for various training and assessment data, by 

changing the random number inside the learning model. In particular, 

the training and test data for the ANN were varied based on the seed 

number. Twenty random numbers from 0 to 19 were set, and the 

compositions of the assessment and test data were changed for each 

random number. Finally, the conclusion was derived by synthesizing 

the accuracy based on 20 random numbers. 

3.1.2 Root mean square error (RMSE)

The root mean square error (RMSE), a general index for assessing a 

regression model, was used in this study, It can be expressed as shown 

in Eq. (1), where   denotes the RAO value obtained via simulation 

using an in-house code, and   denotes the RAO value as predicted by 

the learning model.








  



 

 (1)

  : Original data
  : Prediction data

 : Data number

3.1.3 Standard deviation (SD)

The standard deviation (SD), which represents the scatter, was used 

to reflect the fluctuations of each RMSE from the 20 random numbers. 

The SD can be expressed as shown in Eq. (2): 

±



  (2)

  : Prediction data

  : Mean value of original data

 : Data number 

3.1.4 Correlation coefficient

The scatter plots for two features were used to improve the accuracy 

of the learning model. To identify the relationships between the 

features in the scatter plots, the correlation coefficient () was used as 

an index to measure the direction and intensity of the linear 

relationship. The correlation coefficient can be expressed as shown in 

Eq. (3): 
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(3)

  : Variable 

  : Variable 

  : Variable ’s mean value
  : Variable ’s mean value

 : Data number

3.2 Case Information
Data number: 100EA / 200EA / 300EA / 400EA / 500EA

Hidden layer number: 2/3/4 layers

Hidden layer neuron number: (256,256) / (200,200) / (100,100) / 

(115,95) / (18,18) / (14,14) 

Table 3 shows the cases according to the variables. Each case is 

expressed in the form of ‘DNdata number_L hidden layer number_NN 

(neuron number of layer 1, neuron number of layer 2…)’. 

Table 3 Case table

Variable Case

Data Number

DN100_L2_NN(256,256)

DN200_L2_NN(256,256)

DN300_L2_NN(256,256)

DN400_L2_NN(256,256)

DN500_L2_NN(256,256)

Hidden Layer Number

DN500_L2_NN(256,256)

DN500_L3_NN(256,256,256)

DN500_L4_NN(256,256,256,256)

Hidden Layer Neuron Number

DN500_L2_NN(256,256)

DN500_L2_NN(200,200)

DN500_L2_NN(115,95)

DN500_L2_NN(100,100)

DN500_L2_NN(18,18)

DN500_L2_NN(14,14)

3.3 Learning Results by Data Number 
The number of pieces of data was changed from 100 to 500, in 100 

intervals. Fig. 4 shows the distribution plot for each data. Here, the 

-axis represents the length in Fig. 4(a), breadth in Fig. 4(b), and draft in 

Fig. 4(c), and the -axis represents the number. The purpose of using 

similar data distributions by data number was to preprocess the data 
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configurations before learning, as biased data can distort the accuracy 

of a learning model.

Average line

 

Fig. 6 DN500_L2_NN(256,256)’s RMSE

Fig. 5 shows the RMSE and SD values for 20 test data, according to 

the data number. In Fig. 5(a), it can be seen that the RMSE decreases 

with increasing data number. From Fig. 5(b), it can be seen that the 

variation of the accuracy also decreased.

Fig. 6 shows a graph with the seed number (0–19) as the x-axis and 

RMSE as y-axis for the case of DN500_L2_NN(256,256). In this case, 

Table 4 RMSE of seed number

Seed number RMSE Mean

#3 0.0717

0.0743

#6 0.0775

#8 0.0725

#12 0.0712

#14 0.0785

#0 0.0548

0.0534

#7 0.0528

#11 0.0547

#13 0.0536

#18 0.0509
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Fig. 5 (a) RMSE & (b) SD by data number 
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the data sets with the bottom 25% accuracies among the 20 seed 

numbers (3, 6, 8, 12, and 14) are indicated by red bars, whereas the 

data sets with the top 25% accuracies (0, 7, 11, 13, and 18) are 

indicated in black bars. Table 4 lists the values and means of the data 

with the bottom 25% and top 25% accuracies.

3.3.1 Seed number: 14

Seed number 14 is the data set with the highest RMSE, indicating 

that it has the lowest accuracy. However, the RMSE result of seed 

number 14 is derived as the mean RMSE for 100 ships, i.e., the test 

data. Considering that it is necessary to analyze the RMSE values for 

the 100 ships comprising the test data, a graph was generated for seed 

number 14, with the 100 ships of the test data on the x-axis, and the 

RMSE values of the ships on the y-axis (as shown in Fig. 7). A close 

examination of Fig. 7 reveals that the accuracy of the learning model 

for most of the ships is high, but the accuracy drops for some ships, 

owing to differences between the observed and predicted data.

Therefore, in this study, the RAOs of the bottom three ships and top 

three ships were compared as representative examples, and ships with 

a high RMSE were examined. For seed number 14, ships #21, #53, and 

#66 had low RMSEs, whereas ships #50, #63, and #80 had high 

RMSEs. 

Fig. 7 Seed number 14’s RMSE at each ship

Fig. 8 shows graphs for comparing the observed and predicted data 

of the RAOs for ships #21, #53, and #66. Although there were slight 

differences between the observed and predicted data in a specific 

Fig. 8 #21, #53, and #66 RAO comparison

Fig. 9 #50, #63, and #80 RAO comparison
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frequency range, the locations and sizes of the resonance points of the 

ships were predicted with high accuracy.

Fig. 9 shows graphs for comparing the observed and predicted data 

of the RAOs for ships #50, #63, and #80. It can be seen that ships #50, 

#63, and #80 have differences between the observed and predicted data 

at the locations of the resonance points. Furthermore, on the y-axis in 

Fig. 9, the size of the observation data at the resonance point is lower 

than 0.8 for ship #50, whereas the sizes at the resonance points of the 

observation data on the y-axis for ships #63 and #80 are approximately 

1.2. This difference in the absolute values on the y-axis is another 

factor that increases the RMSE. Lastly, for ship #80, which has the 

lowest accuracy, there are differences in not only the location of the 

resonance point, but also in the size at the resonance point, as well as 

between the observed and predicted data over the entire frequency 

range. 

3.3.2 Seed number: 18

Seed number 18 is the data set with the lowest RMSE, i.e., the data 

set showing the highest accuracy. The results were verified using the 

same method described for seed number 14 in Section 3.3.1. Fig. 10 

shows a graph of 100 ships (the test data) on the x-axis, and the RMSE 

of each ship on the y-axis. A close examination of Fig. 10 reveals that 

Fig. 10 Seed number 18’s RMSE at each ship

although the accuracy of the learning model for most of the ships is 

high, the model’s accuracy for some ships decreases, owing to 

differences between the observed and predicted data. 

As in Section 3.3.1, the RAOs of top three and bottom three ships 

Fig. 11 #9, #56, and #69 RAO comparison

Fig. 12 #11, #14, and #83 RAO comparison
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were compared for seed number 18, and they were selected as the data 

for examining the reasons for high RMSEs. Ships #9, #56, and #69 

from seed number 18 showed low RMSEs, whereas ships #11, #14, 

and #83 showed high RMSEs. 

Fig. 11 shows graphs comparing the observed and predicted data of 

the RAOs for ships #9, #56, and #69. Similar to ships #21, #53, and 

#66 of the above-mentioned seed number 14, there were slight 

differences between the observed and predicted data in a specific 

frequency range, but the locations and sizes of the ship’s resonance 

points were predicted with high accuracy.

Fig. 12 shows graphs comparing the observed and predicted data for 

the RAOs of ships #11, #14, and #83. The RMSE of ship #11 was 

measured as high, as the observation data were abnormal at 2 rad/s. 

This is considered to be a noise generated when the high-frequency 

region was analyzed using the in-house code; the prediction data is 

considered to be the normal result. Thus, although ship #3 has the 

highest RMSE, data preprocessing for the abnormal result at 2 rad/s is 

expected to decrease the RMSE. In the case of ships #14 and #84, as 

mentioned above, a high RMSE is observed, owing to differences in 

not only the location of the resonance points, but also in the sizes at the 

resonance points, as well as between the observed and predicted data 

over the entire frequency range.

3.4 Learning Results with Different Numbers of Hidden Layers 
The hidden layer calculates a weighted sum by receiving input 

values from the input layer and delivers this value to the output layer 

by applying it to an activation function. Regarding the number of 

hidden layers, one or two-layered neural networks are frequently used. 

Nevertheless, sometimes many hidden layers are required, owing to 

the purpose or complexity of the neural network. Therefore, to 

Fig. 13 (a) RMSE & (b) SD result with the change in the hidden layer number

Fig. 14 (a) DN500_L4_NN(256,256)’s RMSE & (b) Seed number 8 RMSE
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optimize the number of hidden layers in this study, the RMSE and SD 

values were obtained when increasing the number of hidden layers to 

two, three, and four.

Consequently, Fig. 13(a) shows a graph with the number of hidden 

layers on the x-axis and RMSE on the y-axis, and Fig. 13(b) shows a 

graph with the number of hidden layers on the x-axis and SD on the 

y-axis. An observation of these graphs reveals that when the number of 

hidden layers increased from two to three, the RMSE and SD increased 

slightly. When the number of hidden layers was four, the RMSE and 

SD increased sharply. Therefore, it was determined that two is the 

optimal number of hidden layers in this study.

Fig. 14(a) shows a graph with the seed number on the x-axis and 

RMSE on the y-axis for DN500_L4_NN(256,256). The 12 RMSEs 

higher than the mean are marked by red slashes. Fig. 14(b) shows a 

graph of the RMSEs for 100 ships in seed number 8, which has high 

RMSEs. In Fig. 14(b), ships #13, #17, and #54, which have high 

RMSEs, are marked with an ‘X’. 

An observation of the prediction data for the three ships in Fig. 15 

reveals that all of the ships have the same RAO, even though their 

specifications are different. Furthermore, a common phenomenon of 

predicting the same RAO is observed in the 12 seed numbers marked 

by red slashes, even though the 100 ships have different specifications. 

The cause of this phenomenon is considered to be the increased 

complexity of the system, owing to the increased number of hidden 

layers. In other words, it can be interpreted as a situation where the 

complexity increased, and the local minima was found in a certain part 

of the loss function instead of the global minima for the entire loss 

function, resulting in insufficient learning.

3.5 Learning Results with Different Numbers of Neurons in 
the Hidden Layer

In Sections 3.3 and 3.4, an intermediate conclusion was derived, i.e., 

that the optimal model is the case where there are data for 500 ships, 

and the number of hidden layer numbers is two. In this section, the 

learning results were analyzed according to different numbers of 

neurons in the hidden layer, to draw the final conclusions. During 

learning, there is difficulty in decision-making, as the number of 

neurons in the hidden layer depends on the user’s experience, whereas 

Fig. 15 #13, #17, and #54 RAO comparison

Table 5 Changes in the hidden layer number of neurons 

Case Name Description Etc

1 DN500_L2_NN(256,256)
First floor neuron : Random selection (256)
Second floor neuron : Random selection (256)

-

2 DN500_L2_NN(200,200)
First floor neuron : Random selection (200)
Second floor neuron : Random selection (200)

-

3 DN500_L2_NN(115,95)
First floor neuron: 
Second floor neuron: 

 : Input layer node number
 : Output layer node number

DN : Data number 

4 DN500_L2_NN(100,100)
First floor neuron: Random selection (100)
Second floor neuron: Random selection (100)

-

5 DN500_L2_NN(18,18)
First floor neuron: 



Second floor neuron: 


 : Input layer node number
 : Output layer node number

6 DN500_L2_NN(14,14)
First floor neuron: 



Second floor neuron: 


 : Input layer node number
 : Output layer node number
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the neuron numbers of the input and output layers are fixed. Therefore, 

in this section, the RMSEs of the learning model were compared, by 

changing the numbers of neurons in the hidden layer in the cases of 

DN500_L2. 

A backward approach was used to configure these cases, in which 

the neural network was learned and tested while reducing the number 

of neurons in the hidden layer step-by-step. Table 5 outlines each case 

using the neural network structure. For cases 1, 2, and 4, the number of 

neurons in the learning model was selected randomly. The number of 

neurons for case 3 was selected by referring to a previous study 

(Stathakis, 2009). For cases 5 and 6, a rule of thumb from a previous 

study (Kim, 2017) was used. 

In Fig. 16(a), a tendency can be seen in that in general, as the 

number of neurons increased, the RMSE also increased. A close 

observation reveals that in case 3, the RMSE decreased somewhat, but 

the decrease was insignificant; moreover, in cases 5 and 6, the RMSEs 

increased sharply. In contrast, Fig. 16(b) shows that as the number of 

neurons decreased, the SD also decreased. In short, cases 1, 2, 3, and 4 

have low RMSEs on average, but the fluctuations of the RMSE were 

larger than those of cases 5 and 6, depending on the assessment data. 

In contrast, cases 5 and 6 have relatively high RMSEs, but the 

fluctuations of those RMSEs are small. Cases 1, 2, and 3 cannot be the 

optimal model because their SDs are excessively large, although their 

RMSEs are similar to that of case 4. Furthermore, cases 5 and 6 have 

low accuracy regarding the prediction data owing to high RMSEs, 

although their SDs are smaller than that of case 4. Therefore, case 4 is 

considered to be the optimal model, as an appropriate compromise 

between the RMSE and SD. 

3.6 Analysis of the Optimal Model Learning Result and Discussion
Fig. 17(a) shows a graph of the RMSE based on assessment data of 

the case DN500_L2_NN(100,100). In Section 3.5, the SD of case 4 

was found to have small fluctuations. In addition, the RMSE values for 

each seed number comprising case 4 show that seed number 14 has a 
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higher RMSE than those of the other test data. 

Therefore, it is believed that an analysis of the test data for seed 

number 14 would improve the accuracy of the learning model, as well 

as the accuracy of learning results. Fig. 17(b) shows a graph of the 

RMSE for each ship in seed number 14. The results are analyzed by 

defining “Zone A” for RMSE ≥ 0.25 and ≤ 0.5, “Zone B” for RMSE 

≥ 0.0826 and < 0.25, and “Below Average” for RMSE < 0.0826. The 

RAOs were initially compared for ships #50, #63, and #80, which 

belong to Zone A, and then for ships #27, #77, and #92, which belong 

to Zone B.

Fig. 18 shows a graph for comparing the RAOs of ships #27, #77, 

and #92, which belong to Zone B. These ships have somewhat lower 

accuracies than the mean, although higher than those of Zone A. Their 

RAO values over the entire frequency range are similar, and the 

location of the resonance is predicted with a high error. However, all 

three ships generated RMSEs, owing to differences in the sizes at the 

resonance point. 

Fig. 19 shows a graph for comparing the RAOs of ships #50, #63, 

and #80, which belong to Zone A. Although they had the same general 

shape in the RAO, there were significant differences in the location 

and size of the resonance point, and between the observed and 

predicted data over the low- and high-frequency ranges. From Fig. 19, 

it can be concluded that the difference between the observed and 

predicted data is the main cause of the RMSE for the ships with high 

RMSEs in each seed number.

It is believed that understanding the distribution characteristics of 

the data set by obtaining the correlation(s) between the training and 

test data can improve the accuracy for ships with a high RMSE. 

Therefore, in Table 6, the correlation coefficients of the input variables 

( ) associated with the ship’s breadth in the 

assessment and test data of seed number 14 were determined and 

ranked. For example, the breadth () and volume () of the training 

Table 6 Rank between training data and test data each feature

Feature  Coefficient_Train Rank Coefficient_Tests Rank

 0.740 3 0.660 5

 0.719 4 0.609 6

 0.839 2 0.737 4

 0.658 6 0.759 3

 0.715 5 0.874 1

 0.879 1 0.811 2

Fig. 18 RAO comparison (Zone B: #27, #77, and #92)

Fig. 19 RAO comparison (Zone A: #50, #63, and #80)
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data showed a high positive correlation of 0.839, but in the assessment 

data, it was 0.737, i.e., a lower correlation than in the training data. 

Moreover, the correlations for features such as the coefficient of 

restitution (which is directly related to the location of the resonance 

point) were different. This indicates that the low accuracy was caused 

by the differences between the trends of the training and assessment 

data.

Fig. 20 shows a scatter plots where the x-axis is set as the ship’s 

breadth, and the y-axis is set as the length, draft, and transverse 

metacenter height. They shows the training data (gray circle), test data 

(blue circle), Zone A with high RMSEs (red cross mark), and Zone B 

with medium accuracy (orange diamond), as used in this study. 

Typically, when one specification of a ship (such as length) is 

determined, the other specifications, e.g., breadth and draft, have 

specific ranges. This means that the specifications of ships have 

certain correlations with one another, and these correlations can be 

also seen in the scatter plots. 

The scatter plot in Fig. 20 indicates that the data are concentrated in 

a specific section, and that ships having a high RMSE (Zone A) are 

located in an area with a low data density. In other words, ships with 

specifications that have not been sufficiently trained have low data 

accuracy. Figs. 18–19 show that while the accuracy was somewhat 

insufficient for Zone A, the overall RAO trend for the ships belonging 

to Zone B was predicted, even though the RMSE was high. 

Furthermore, considering that only a difference in the size at the 

resonance point caused an RMSE for certain ships, it can be said that 

there are cases where the prediction data of the RAO is reliable, even 

in a region with low data density.

4. Conclusions

This study was conducted to predict the roll RAO of barge-type 

ships using machine learning. The input variables (

 ) were generated using the specifications of 500 barge-type 

ships registered with classification societies. In addition, the values for 

the roll RAO were obtained by simulating the 500 ships using an 

in-house code based on a 3D singularity distribution method, and the 

features and RAOs of the data sets were configured. Finally, the data 

were composed with the RAOs in the range of 0.1–2.0 rad/s, according 

to the major specifications of the barge-type ships. For the learning 

model, an ANN was created using Python’s TensorFlow, and a DNN 

technique with two or more hidden layers was used. The accuracy of 

the learning results was determined by changing the number of 

datapoints, number of hidden layers, and node numbers in the hidden 

layer. The RMSE, SD, correlation coefficient, and scatter plot were 

used as accuracy indices. When the RMSE and SD were considered 

together, the optimal results were obtained in case 4 [DN500_L2_NN 

(100,100)]. Finally, the shortcomings of the learning model and 

possible improvements were examined through an analysis of the 

accuracy of Case 4. 

The conclusions of this study can be summarized as follows.

(1) The accuracy of the learning model can differ depending on the 

combination of training and test data. Therefore, the reliability of the 

learning results can be improved by collecting sufficient data.

(2) The accuracy increases when there are more high-quality data 

following the statistical distribution.

(3) Using many hidden layers can lower the accuracy, by increasing 

the complexity of the neural network model.

(4) The optimal model in this study is DN500_L2_NN(100,100).

(5) There are three main factors causing low accuracy in RAO 

prediction:

 - Failure to accurately predict the location of the resonance point;

 - An increase of RMSE owing to a difference in size between the 

observed and predicted data at the resonance point, and

 - Differences between the observed and predicted data over the 

entire frequency range.

(6) The scatter plot showed that ships with low accuracy are located 

in an area with a low data density.

(7) This study did not consider various data on the centers of gravity 

of the barge ships, which involves practical difficulties. Therefore, a 

study considering various centers of gravity should be conducted.

Fig. 20 Scatter plot (Breadth with length & draft & GMT)
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