• Title/Summary/Keyword: prediction accuracy

Search Result 3,785, Processing Time 0.043 seconds

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Research about feature selection that use heuristic function (휴리스틱 함수를 이용한 feature selection에 관한 연구)

  • Hong, Seok-Mi;Jung, Kyung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.281-286
    • /
    • 2003
  • A large number of features are collected for problem solving in real life, but to utilize ail the features collected would be difficult. It is not so easy to collect of correct data about all features. In case it takes advantage of all collected data to learn, complicated learning model is created and good performance result can't get. Also exist interrelationships or hierarchical relations among the features. We can reduce feature's number analyzing relation among the features using heuristic knowledge or statistical method. Heuristic technique refers to learning through repetitive trial and errors and experience. Experts can approach to relevant problem domain through opinion collection process by experience. These properties can be utilized to reduce the number of feature used in learning. Experts generate a new feature (highly abstract) using raw data. This paper describes machine learning model that reduce the number of features used in learning using heuristic function and use abstracted feature by neural network's input value. We have applied this model to the win/lose prediction in pro-baseball games. The result shows the model mixing two techniques not only reduces the complexity of the neural network model but also significantly improves the classification accuracy than when neural network and heuristic model are used separately.

The study of quantitative analytical method for pH and moisture of Hanji record paper using non-destructive FT-NIR spectroscopy (비파괴 분석 방법인 푸리에 변환 근적외선 분광 분석을 이용한 한지 기록물의 산성도 및 함수율 정량 분석 연구)

  • Shin, Yong-Min;Park, Soung-Be;Lee, Chang-Yong;Kim, Chan-Bong;Lee, Seong-Uk;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • It is essential to evaluate the quality of Hanji record paper without damaging the record paper by previous destructive methods. The samples were Hanji record paper produced in the 1900s. Near-infrared (NIR) spectrometer was used as a non destructive method for evaluating the quality of record papers. Fourier transform (FT) spectrometer was used with 12,500 to 4,000 $cm^{-1}$ wavenumber range for quantitative analysis and it has high accuracy and good signal-to-noise ratio. The acidity and moisture content of Hanji record paper were measured by integrating sphere as diffuse reflectance type. The acidity (pH) of chemical factors as a quality evaluated factor of Hanji was correlated to NIR spectrum. The NIR spectrum was pretreated to obtain the coefficients of optimum correlation. Multiplicative scatter correction (MSC) and First derivative of Savitzky-Golay were used as pretreated methods. The coefficients of optimum correlation were calculated by PLSR (partial least square regression). The correlation coefficients ($R^2$) of acidity had 0.92 on NIR spectra without pretreatment. Also the standard error of prediction (SEP) of pH was 0.24. And then the NIR spectra with pretreatment would have better correlation coefficient ($R^2$ = 0.98) and 0.19 as SEP on pH. For moisture contents, the linearity correlation without pretreatment was higher than the case with pretreatment (MSC, $1^{st}$ derivative). As the best result, the $R^2$ was 0.99 and SEP was 0.45. This indicates that it is highly proper to evaluate the quality of Hanji record papers speedily with integrated sphere and FT NIR analyzer as a non-destructive method.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore (일메나이트광의 유동층 염화반응에 대한 수치적 예측)

  • Chung, Dong-Kyu;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Song, Duk-Yong
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2019
  • Numerical model that considered the shrinking core model and elutriation and degradation of particles was developed to predict selective chlorination of ilmenite and carbo-chlorination of $TiO_2$ in a two stage fluidized bed chlorination furnace. It is possible to analyze the fluidized bed chlorination reaction to be able to reflect particle distribution for mass balances and the chlorination reaction. The numerical model showed an accuracy with error less than 6% compared with fluidized bed experiments. The chlorination degree with particle size change was greater with a smaller particle size, and there was a 100 min difference to obtain a chlorination degree of 1 between $75{\mu}m$ and $275{\mu}m$. This was not shown to such a great extent with variation of temperature ($800{\sim}1000^{\circ}C$), and there was only a 10 min difference to obtain a chlorination degree of 0.9. In the first selective chlorination process, the mass reduction rate approached to the theoretical value of 0.4735 after 180 min, and chlorination changed the Fe component into $FeCl_2$ or $FeCl_3$ and showed nearly 1. In the second carbo-chlorination process, the chlorination degree of $TiO_2$ approached 0.98 and the mass fraction reached 0.02 with conversion into $TiCl_4$. In the first selective chlorination process, 98% of $TiO_2$ was produced at 180 min, and this was changed into 99% of $TiCl_4$ after an additional 90 min. Also the mass reduction rate of $TiO_2$ was reduced to 99% in the second continuous carbo-chlorination process.

Prediction of Energy Requirements for Maintenance and Growth of Female Korean Black Goats (번식용 교잡 흑염소의 유지와 성장을 위한 대사에너지 요구량 추정)

  • Lee, Jinwook;Kim, Kwan Woo;Lee, Sung Soo;Ko, Yeoung Gyu;Lee, Yong Jae;Kim, Sung Woo;Jeon, Da Yeon;Roh, Hee Jong;Yun, Yeong Sik;Kim, Do Hyung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • This study was conducted to predict the energy requirements for maintenance and growth of female Korean black goats during their growth and pregnancy phases. Fifty female goats ($18.7{\pm}0.27kg$) in their growth phase with an average age of 5 months were stratified by weight and randomly assigned into 5 groups. They were fed 5 diets varying in metabolic energy (ME) [2.32 (G1), 2.49 (G2), 2.74 (G3), 2.99 (G4), and 3.24 (G5) Mcal/kg] until they were 9-month-old. After natural breeding, 50 female goats ($30.7{\pm}0.59kg$) were stratified by weight and randomly assigned into 5 groups. They were fed 5 diets varying in ME [2.32 (P1), 2.43 (P2), 2.55 (P3), 2.66 (P4), and 2.78 (P5) Mcal/kg]. The average feed intake ranged between 1.5 and 2.0% of the body weight (BW), and there was no significant difference between the treatment groups with goats in growth or pregnancy phases. Average daily gain (ADG) in diet demand during the growth phase increased with an increasing ME density and ranged from 46 to 69 g/d (p<0.01). Feed conversion ratio (FCR) improved with the ME density during the growth phase (p<0.01). The intercept of the regression equation between ME intake and ADG indicated that energy requirement for maintenance of goats during growth and pregnancy phases was $103.53kcal/BW^{0.75}$ and $102.7kcal/BW^{0.75}$, respectively. These results may serve as a basis for the establishment of goat feeding standards in Korea. Further studies are required to assess the nutrient requirement of goats using various methods for improving accuracy.

A Study on Particulate Matter Forecasting Improvement by using Asian Dust Emissions in East Asia (황사배출량을 적용한 동아시아 미세먼지 예보 개선 연구)

  • Choi, Daeryun;Yun, Huiyoung;Chang, Limseok;Lee, Jaebum;Lee, Younghee;Myoung, Jisu;Kim, Taehee;Koo, Younseo
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.531-546
    • /
    • 2018
  • Air quality forecasting system with Asian dust emissions was developed in East Asia, and $PM_{10}$ forecasting performance of chemical transport model with Asian dust emissions was validated and evaluated. The chemical transport model (CTM) with Asian dust emission was found to supplement $PM_{10}$ concentrations that had been under-estimated in China regions and improved statistics for performance of CTM, although the model were overestimated during some periods in China. In Korea, the prediction model adequately simulated inflow of Asian dust events on February 22~24 and March 16~17, but the model is found to be overestimated during no Asian dust event periods on April. However, the model supplemented $PM_{10}$ concentrations, which was underestimated in most regions in Korea and the statistics for performance of the models were improved. The $PM_{10}$ forecasting performance of air quality forecasting model with Asian dust emissions tends to improve POD (Probability of Detection) compared to basic model without Asian dust emissions, but A (Accuracy) has shown similar or decreased, and FAR (False Alarms) have increased during 2017.Therefore, the developed air quality forecasting model with Asian dust emission was not proposed as a representative $PM_{10}$ forecast model in South Korea.