Browse > Article
http://dx.doi.org/10.5467/JKESS.2021.42.5.536

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region  

Kwak, Byeong-Dae (Department of Science Education, Seoul National University)
Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University)
Woo, Hye-Jin (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University)
Kim, Hee-Young (Department of Science Education, Seoul National University)
Hong, Sung-Eun (GI E&S)
Sohn, Eun-Ha (National Meteorological Satellite Center)
Publication Information
Journal of the Korean earth science society / v.42, no.5, 2021 , pp. 536-555 More about this Journal
Abstract
Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.
Keywords
sea surface wind; scatterometer; ASCAT; MetOp-A/B; validation; coastal region; wind direction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Anderson, C., Figa, J., Bonekamp, H., Wilson, J. J. W., Verspeek, J., Stoffelen, A., and Portabella, M., 2011, Validation of backscatter measurements from the advanced scatterometer on MetOp-A. Journal of Atmospheric and Oceanic Technology, 29(1), 77-88.   DOI
2 Barthelmie, R. J., Sempreviva, A. M., and Pryor, S. C., 2010, The influence of humidity fluxes on offshore wind speed profiles. In Annales Geophysicae (Vol. 28, No. 5, pp. 1043-1052). Copernicus GmbH.   DOI
3 Bentamy, A., Croize-Fillon, D., and Perigaud, C., 2008, Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Science, 4(4), 265-274.   DOI
4 Park, K.A., Cornillon, P., and Codiga, D. L., 2006, Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. Journal of Geophysical Research: Oceans, 111(C3).
5 Park, K.A., Kim, K. R., Kim, K., Chung, J. Y., and Conillor, P. C., 2003, Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometerobserved Wind Speed (NSCAT) over the East (Japan) Sea. Journal of the korean society of oceanography, 38(4), 173-184.
6 Paulson, C. A., 1970, The mathematical representation of wind speed and temperature profiles in the unstable 42 atmospheric surface layer. Journal of Applied Meteorology, 9, 857-861.   DOI
7 Pensieri, S., Bozzano, R., and Schiano, M. E., 2010, Comparison between QuikSCAT and buoy wind data in the Ligurian Sea. Journal of Marine Systems, 81(4), 286-296.   DOI
8 Renault, L., McWilliams, J. C., and Masson, S., 2017, Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Scientific reports, 7(1), 1-7.   DOI
9 Risien, C. M., and Chelton, D. B., 2008, A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38(11), 2379-2413.   DOI
10 Rodriguez, E., Gaston, R. W., Durden, S. L., Stiles, B., Spencer, M., Veilleux, L., ... and Dunbar, R. S., 2009, A scatterometer for XOVWM, the extended ocean vector winds mission. In 2009 IEEE Radar Conference (pp. 1-4). IEEE.
11 Na, J.Y., 1992, Monthly-mean sea surface winds over the adjacent seas of the Korean Peninsula. The Journal of the Oceanological Society of Korea, 27, 1-10. (in Korean)
12 Stoffelen, A., and Anderson, D., 1997, Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research: Oceans, 102(C3), 5767-5780.   DOI
13 Park, J., Kim, D.W., Jo, Y.H., and Kim, D., 2018, Accuracy evaluation of daily-gridded ASCAT satellite data around the Korean Peninsula. Korean Journal of Remote Sensing, 34(2_1), 213-225. (in Korean)   DOI
14 Jeong, J.Y., Shim, J.S., Lee, D.K., Min, I.K., and Kwon, J.I., 2008, Validation of QuikSCAT wind with resolution of 12.5 km in the vicinity of Korean Peninsula. Ocean and Polar Research, 30(1), 47-58. (in Korean)   DOI
15 Bentamy, A., Katsaros, K. B., Drennan, W. M., and Forde, E. B., 2002, Daily surface wind fields produced by merged satellite data. Gas Transfer at Water Surfaces, 127, 343-349.
16 Klaes, K. D., Montagner, F., and Larigauderie, C., 2013, Metop-B, the second satellite of the EUMETSAT polar system, in orbit. In Earth Observing Systems XVIII (Vol. 8866, p. 886613). International Society for Optics and Photonics.
17 Large, W. G., and Pond, S., 1981, Open ocean momentum flux measurements in moderate to strong winds. Journal of physical oceanography, 11(3), 324-336.   DOI
18 Liu, W. T., and Tang, W., 1996, Equivalent neutral wind. JPL Publication 96-17, Jet Propulsion Laboratory, Pasadena, CA, USA, 22 p.
19 Liu, W. T., Katsaros, K. B., and Businger, J. A., 1979, Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of Atmospheric sciences, 36(9), 1722-1735.   DOI
20 Liu, W. T., Tang, W., and Polito, P. S., 1998, NASA scatterometer provides global ocean?surface wind fields with more structures than numerical weather prediction. Geophysical Research Letters, 25(6), 761-764.   DOI
21 OSI SAF, 2019, ASCAT wind product user manual. Version 1.16.
22 Bentamy, A., Quilfen, Y., and Flament, P., 2002, Scatterometer wind fields: A new release over the decade 1991?2001. Canadian journal of remote sensing, 28(3), 431-449.   DOI
23 Drobinski, P., Carlotti, P., Newsom, R. K., Banta, R. M., Foster, R. C., and Redelsperger, J. L., 2004, The structure of the near-neutral atmospheric surface layer. Journal of Atmospheric Sciences, 61(6), 699-714.   DOI
24 Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., 1971, Flux-profile relationships in the atmospheric surface layer. Journal of Atmospheric Sciences, 28(2), 181-189.   DOI
25 Choi, D. Y., Woo, H. J., Park, K., Byun, D. S., and Lee, E., 2018, Validation of sea surface wind speeds from satellite altimeters and relation to sea state bias-focus on wind measurements at Ieodo, Marado, Oeyeondo Stations. Journal of the Korean earth science society, 39(2), 139-153.   DOI
26 Chou, K. H., Wu, C. C., and Lin, S. Z., 2013, Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. Journal of Geophysical Research: Atmospheres, 118(16), 9011-9021.   DOI
27 Dyer, A., 1974, A review of flux-profile relationships. Boundary-layer Meteorology, 7(3), 363-372.   DOI
28 Ebuchi, N., 1999, Statistical distribution of wind speeds and directions globally observed by NSCAT. Journal of Geophysical Research: Oceans, 104(C5), 11393-11403.   DOI
29 Spera, D. A., and Richards, T. R., 1979, Modified power law equations for vertical wind profiles. NASA STI/ Recon Technical Report N, 80, 13623.
30 Stoffelen, A., Vogelzang, J., and Verhoef, A., 2010, Verification of scatterometer winds. In 10th international winds workshop (Vol. 20, No. 2, pp. 2010-26).
31 Bentamy, A., and Fillon, D. C., 2012, Gridded surface wind fields from Metop/ASCAT measurements. International journal of remote sensing, 33(6), 1729-1754.   DOI
32 Cornillon, P., and Park, K.A., 2001, Warm core ring velocities inferred from NSCAT. Geophysical research letters, 28(4), 575-578.   DOI
33 Min, S.K., Lee, M.I., Kug, J.S., Kim, Y.H., Lee, J.Y., Cha, D.H., Jeong, J.H., and Son, S.W., 2020, Korean Climate Change Assessment Report 2020 (Chap. 9). Korea Meteorological Administration. (in Korean)
34 Pickett, M., Tang, W., Rosenfeld, L., and Wash, C., 2003, QuikSCAT Satellite Comparisons with Nearshore Buoy Wind Data off the U.S. West Coast. Journal of Atmospheric and Oceanic Technology, 20(12), 1869-1879.   DOI
35 Kara, A. B., Wallcraft, A. J., Barron, C. N., Hurlburt, H. E., and Bourassa, M. A., 2008, Accuracy of 10 m winds from satellites and NWP products near land?sea boundaries. Journal of Geophysical Research: Oceans, 113(C10).
36 Kara, A. B., Wallcraft, A. J., and Bourassa, M. A., 2008, Air?sea stability effects on the 10 m winds over the global ocean: Evaluations of air?sea flux algorithms. Journal of Geophysical Research: Oceans, 113(C4).
37 Bentamy, A., Grodsky, S. A., Carton, J. A., Croize?Fillon, D., and Chapron, B., 2012, Matching ASCAT and QuikSCAT winds. Journal of Geophysical Research: Oceans, 117(C2).
38 Tang, W., Liu, W. T., and Stiles, B. W., 2004, Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Transactions on Geoscience and Remote sensing, 42(8), 1762-1769.   DOI
39 Suh, Y. S., Jang, L. H., Lee, N. K., and Ishizaka, J., 2004, Feasibility of red tide detection around Korean waters using satellite remote sensing. Fisheries and aquatic sciences, 7(3), 148-162.   DOI
40 Takeyama, Y., Ohsawa, T., Shimada, S., Kozai, K., Kawaguchi, K., and Kogaki, T., 2019, Assessment of the offshore wind resource in Japan with the ASCAT microwave scatterometer. International Journal of Remote Sensing, 40(3), 1200-1216.   DOI
41 Verspeek, J., Verhoef, A., and Stoffelen, A., 2019, ASCAT-C wind product calibration and validation.
42 Vogelzang, J., and Stoffelen, A., 2011, NWP model error structure functions obtained from scatterometer winds. IEEE transactions on geoscience and remote sensing, 50(7), 2525-2533.   DOI
43 Vogelzang, J., Stoffelen, A., Verhoef, A., and Figa?Saldana, J., 2011, On the quality of high?resolution scatterometer winds. Journal of Geophysical Research: Oceans, 116(C10).
44 Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000, Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850.   DOI
45 Verspeek, J., Stoffelen, A., Verhoef, A., and Portabella, M., 2012, Improved ASCAT wind retrieval using NWP ocean calibration. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2488-2494.   DOI
46 Hersbach, H., 2010, Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF. Journal of Atmospheric and Oceanic Technology, 27, 721-736.   DOI
47 Ebuchi, N., Graber, H. C., and Caruso, M. J., 2002, Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. Journal of Atmospheric and Oceanic Technology, 19(12), 2049-2062.   DOI
48 Liu, W. T., 2002, Progress in scatterometer application. Journal of Oceanography, 58(1), 121-136.   DOI
49 Verhoef, A., Portabella, M., and Stoffelen, A., 2012, Highresolution ASCAT scatterometer winds near the coast. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2481-2487.   DOI
50 Ahn, J.B., Ryu, J.H., Cho, E.H., Park, J.Y., and Ryoo, S.B., 1997, A study of correlations between airtemperature and precipitation of Korea and SST around Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 33(3), 487-495. (in Korean)
51 Banzon, V. F., Reynolds, R. W., and Smith, T. M., 2010, The role of satellite data in extended reconstruction of sea surface temperatures. Proceedings: "Oceans from Space" Venice 2010, 27-28.
52 Graf, J.E., Tsi, W.Y., and Jones, L, 1998, Overview of QuikSCAT mission-a quick deployment of a high resolution, wide swath scanning scatterometer for ocean wind measurement. In Proceedings IEEE Southeastcon '98' Engineering for a New Era', 314-317.
53 Jung, T. S., and Jeong, J. K., 2013, Spatial distribution and time variation of M 2 tide and M 4 tide in the western coast of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 25(4), 255-265.   DOI
54 Hasager, C.B., Mouche, A., Badger, M., Bingol, F., Karagali, I., Driesenaar, T., Stoffelen, A., Pena, A., and Longepe, N., 2015, Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sensing of Environment, 156, 247-263.   DOI
55 Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., and Wittenberg, A. T., 2010, Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966-986.   DOI
56 Freilich, M. H., and Dunbar, R. S., 1999, The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. Journal of Geophysical Research: Oceans, 104(C5), 11231-11246.   DOI