DOI QR코드

DOI QR Code

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation

국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가

  • Lee, Seung-Jae (National Center for AgroMeteorology, Seoul National University) ;
  • Song, Jiae (National Center for AgroMeteorology, Seoul National University) ;
  • Kim, Yu-Jung (National Center for AgroMeteorology, Seoul National University)
  • Received : 2016.09.26
  • Accepted : 2016.12.20
  • Published : 2016.12.30

Abstract

A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

국가농림기상센터(NCAM)에서는 수요자 맞춤형 영농 영림을 지원하기 위하여 전용 수치모델링시스템인 지면대기모델링패키지(LAMP) 버전 1을 구축하였다. 이 패키지는 두 가지의 큰 축으로 구성되어 있다. 하나는 WRF 기상모델과 Noah-MP 지면모델의 결합시스템인 WRF/Noah-MP 시스템이고, 다른 하나는 Noah-MP 지면 모델의 오프라인 독립구동형 1차원 버전이다. 전자는 7일 이상의 중기 기상예측 자료를 1km 내외의 고해상도로 생산하는 일을 담당하고, 후자는 대표적인 농림생태계에 대하여 1년 지면모의 자료를 15분 간격으로 생산하는 일을 담당한다. 본 연구의 목적은 NCAM-LAMP의 두 구성 요소를 간단히 설명하고, 초기의 수치모의 성능을 평가하는데 있다. WRF/Noah-MP 결합시스템은 동아시아를 포함하는 어미격자 도메인에 최고 810m의 수평 해상도를 갖는 3개의 둥지격자로 구축되었으며, 가장 안쪽 도메인은 광릉 활엽수림 관측지와 침엽수림 관측지(GDK 및 GCK)를 포함한다. 이 결합시스템은 현재 미국 환경예측센터의 FNL 자료를 초기 및 경계자료로 이용하여 구동되며, 여러 개의 약 8일 모의 결과를 연결시켜 장기간에 대한 모의 자료를 생산하였다. 정량적 검증 변수는 WRF/Noah-MP 결합시스템의 2m 기온, 10m 바람, 2m 습도, 강수이며, 기상청 ASOS 관측 자료와 WRF/Noah-MP 결합시스템 모의 자료 사이의 차이를 이용하여 각 도메인에서 동적 식생 포함 유무에 따른 모의 오차를 계산하였다. 강수 모의의 정확도는 탐지확률(POD)과 공평위협점수(ETS)로 구성된 표를 이용하여 조사하였다. 오프라인 독립구동형 지면모델은 1년 기간에 대해 모의 결과를 생산하였으며, KoFlux 관측자료와 비교하여, 순복사 플럭스, 현열 플럭스, 잠열 플럭스 및 토양 수분 함량을 평가하였다. WRF/Noah-MP 결합시스템의 모의 결과에 따르면, 모든 도메인 중에서 도메인 4(810m 해상도)에서 2m 기온, 10m 바람 및 2m 습도에 대하여 가장 작은 RMSE를 보였다. 동적 식생을 포함시키면 모든 도메인에서 10m 바람의 모의 오차가 감소하게 되는 경향을 보였다. 도메인 2(7,290m 해상도)에서는 강수 모의 점수가 가장 높았으나, 동적 식생을 포함시킴에 따른 효과는 별로 없었다. 독립구동형 1차원 Noah-MP의 지면모의 결과는 복사 플럭스와 토양 수분의 패턴 및 크기를 포착하였으며, 엽면적지수의 모델 입력 부분을 보충하고, 모델 물리과정의 적절한 조합을 찾아내는 노력을 통해 개선될 수 있는 여지를 남겼다.

Keywords

References

  1. Farella, F., M. Ehlen, A. Fischer, and G. Lizcano, 2013: Coupling micro-scale CFD simulations to meso-scale models. The 1st Symposium on OpenFOAM in Wind Energy (SOWE), 20-21 March, 2013, Germany.
  2. Gaudet, B. J., A. Deng, D. R. Stauffer, N. L. Seaman, and A. Suarez, 2013: Nested realistic daily WRF-LES simulations using eddy-seeded lateral boundary conditions. The 14th Annual WRF User's Workshop, 24-28 June, 2013, CO, U. S. A.
  3. Hong, M.-K, S.-H. Lee, J.-Y. Choi, S.-H. Lee, and S.-J. Lee, 2015: Estimation of soil moisture and irrigation requirement of upland using soil moisture model applied WRF meteorological data. Journal of the Korean Society of Agricultural Engineers 57(6), 173-183. (in Korean with English Abstract) https://doi.org/10.5389/KSAE.2015.57.6.173
  4. Jordan, R., 1991: A one-dimensional temperature model for a snow cover: technical documentation for SNTHERM.89. Special Report 91-16. Cold Reg. Res. and Eng. Lab., U.S. Army Corps of Eng., Hanover, N. H.
  5. Kleczek, M. A., G.-J. Steeneveld, and A. A. M. Holtslag, 2014: Evaluation of the weather research and forecasting mesoscale model for GABLS3: Impact of boundary-layer Schemes, boundary conditions and spin-up. Boundary-Layer Meteorology 152, 213-243. doi: 10.1007/s10546-014-9925-3
  6. Lee, S.-J., J. Kim, M. S. Kang, and B. Malla-Thakuri, 2014: Numerical simulation of local atmospheric circulations in the valley of Gwangneung KoFlux sites. Korean Journal of Agricultural and Forest Meteorology 16, 244-258. (In Korean with English abstract)
  7. Lee, S.-J., J.-S. Kang, and H.-L. Yoo, 2012: Atmospheric Modeling, and Data Assimilation and Predictability (Korean version), SigmaPress, 392pp. (ISBN:9788958329145)
  8. Liu, Y., T. Warner, Y. Liu, C. Vincent, W. Wu, B. Mahoney, S. Swerdlin, K. Parks, and J. Boehnert, 2011: Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. Journal of Wind Engineering and Industrial Aerodynamics 99(4), 308-319. https://doi.org/10.1016/j.jweia.2011.01.013
  9. Meissner, C., and D. Weir, 2011: Utilizing WRF data in CFD models for wind energy assessment. Proceedings of the European Wind Energy Association Conference and Exhibition, Brussels, Belgium.
  10. Niu, G.-Y., Z.-L. Yang, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, L. Longuevergne, A. Kumar, K. Manning, D. Niyogi, E. Rosero, M. Tewari, and Y. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research Atmospheres 116(D12). doi:10.1029/2010JD015139.
  11. Niu, G.-Y., Z.-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. Journal of Geophysical Research 112(D7). doi:10.1029/2006JD007522.
  12. Niu, G.-Y., and Z.-L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. Journal of Hydrometeoroloy 7, 937-952, doi:10.1175/JHM538.1.
  13. Niu, G.-Y., and Z.-L. Yang, 2004: The effects of canopy processes on snow surface energy and mass balances. Journal of Geophysical Research 109, D23111, doi:10.1029/2004JD004884.
  14. Park, J., S.-J. Lee, J. Song, and H. Kim, 2016: Estimation of forest water use with land surface model over Gwangneung watershed. The International Workshop on Agromet and GIS Applications for Agricultural Decision Making 76, 5-9 December, Jeju.
  15. Shin, H.-H., and S.-Y., Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Monthly Weather Review 143, doi: 10.1175/MWR-D-14-00116.1.
  16. Song, J., S.-J. Lee, M. Kang, M. Moon, J.-H. Lee, and J. Kim, 2015: High-resolution numerical simulations with WRF/Noah-MP in Cheongmicheon farmland in Korea during the 2014 special observation period. Korean Journal of Agricultural and Forest Meteorology 17(4), 384-398. https://doi.org/10.5532/KJAFM.2015.17.4.384
  17. Verseghy, D. L., 1991: CLASS-A Canadian land surface scheme for GCMS: I. Soil model. International Journal of Climatology 11(2), 111-133, doi:10.1002/joc.3370110202.
  18. Yang, Z.-L., G.-Y. Niu, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, K. Manning, D. Niyogi, M. Tewari, and Y.-L. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research 116(D12). doi:10.1029/2010JD015140.
  19. Yang, R., and M. A. Friedl, 2003: Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. Journal of Geophysical Research 108(D16). doi:10.1029/2002JD003109.
  20. Zheng Y., Y. Miao, S. Liu, B. Chen, H. Zheng, and S. Wang, 2015: Simulating flow and dispersion by using WRF-CFD coupled model in a built-up area of Shenyang. Advances in Meteorology 2015 1-15, .
  21. 국립기상연구소(NIMR), 2013: 농업기상 예측시스템 구축 기술. 기술노트(NIMR-TN-2013-019), National Institute of Meteorological Sciences, 34pp.

Cited by

  1. A Statistical Parameter Correction Technique for WRF Medium-Range Prediction of Near-Surface Temperature and Wind Speed Using Generalized Linear Model vol.9, pp.8, 2018, https://doi.org/10.3390/atmos9080291