DOI QR코드

DOI QR Code

일메나이트광의 유동층 염화반응에 대한 수치적 예측

Numerical Prediction for Fluidized Bed Chlorination Reaction of Ilmenite Ore

  • 정동규 (부경대학교 공학연구원 청정생산기술연구소) ;
  • 정은진 (포항산업과학연구원 금속재료연구그룹) ;
  • 이미선 (포항산업과학연구원 금속재료연구그룹) ;
  • 김진영 (포항산업과학연구원 금속재료연구그룹) ;
  • 송덕용 (한국금속재료연구조합)
  • Chung, Dong-Kyu (Clean Manufacturing Technology Research Center, Pukyong National University) ;
  • Jung, Eun-Jin (Metallic Materials Research Group, Research Institute of Industrial Science & Technology) ;
  • Lee, Mi Sun (Metallic Materials Research Group, Research Institute of Industrial Science & Technology) ;
  • Kim, Jinyoung (Metallic Materials Research Group, Research Institute of Industrial Science & Technology) ;
  • Song, Duk-Yong (Korea Metal Material Research Association)
  • 투고 : 2019.02.12
  • 심사 : 2019.03.26
  • 발행 : 2019.06.30

초록

2단 유동층 염화로에서 일메나이트광의 선택염화반응과 이산화티탄의 탄소염화반응의 염화도를 예측하기 위해서 shrinking core 모델과 유출률 및 입자파손을 고려한 수치 모델을 개발하였다. 입자분포를 고려하여 입자별 물질 수지와 염화반응을 반영할 수 있는 유동층 염화 반응 해석이 가능하다. 유동층 염화로의 실험값과 비교하여 약 6% 오차율의 정확성을 보였다. 입자 크기에 따라서는 입자 크기가 작을수록 염화도의 변화가 더 크게 나타났으며 염화도 1의 값에 도달하는 반응시간 차이가 약 100 min 정도로 나타났다. 온도의 변화($800{\sim}1000^{\circ}C$)에 대한 염화도의 변화는 염화도 0.9에 도달하는 반응시간이 약 10 min 차이로 크게 나타나지 않았다. 1단계 선택염화공정에서 일메나이트광의 질량감소율은 180 min 경과 시에 이론값인 0.4735 값에 근접하고, Fe 성분의 염화도는 $FeCl_2$ 또는 $FeCl_3$로 변환되어 180 min 경과 시에는 거의 1의 값을 보인다. 2단계 탄소염화공정에서 $TiO_2$의 염화도는 180 min 경과 시 0.98에 근접하고, 질량분율은 0.02에 도달하여 $TiCl_4$로 변환되는 것으로 나타났다. 1단계 선택염화공정에서 $TiO_2$는 180 min 경과 시에 98%까지 생성되었다가 연속적인 2단계 탄소염화공정에서 추가로 90 min 경과 시(총 경과 시간 270 min)에 99% $TiCl_4$로 전환되는 것으로 나타나고, 질량감소율도 99% 이상 감소하였다.

Numerical model that considered the shrinking core model and elutriation and degradation of particles was developed to predict selective chlorination of ilmenite and carbo-chlorination of $TiO_2$ in a two stage fluidized bed chlorination furnace. It is possible to analyze the fluidized bed chlorination reaction to be able to reflect particle distribution for mass balances and the chlorination reaction. The numerical model showed an accuracy with error less than 6% compared with fluidized bed experiments. The chlorination degree with particle size change was greater with a smaller particle size, and there was a 100 min difference to obtain a chlorination degree of 1 between $75{\mu}m$ and $275{\mu}m$. This was not shown to such a great extent with variation of temperature ($800{\sim}1000^{\circ}C$), and there was only a 10 min difference to obtain a chlorination degree of 0.9. In the first selective chlorination process, the mass reduction rate approached to the theoretical value of 0.4735 after 180 min, and chlorination changed the Fe component into $FeCl_2$ or $FeCl_3$ and showed nearly 1. In the second carbo-chlorination process, the chlorination degree of $TiO_2$ approached 0.98 and the mass fraction reached 0.02 with conversion into $TiCl_4$. In the first selective chlorination process, 98% of $TiO_2$ was produced at 180 min, and this was changed into 99% of $TiCl_4$ after an additional 90 min. Also the mass reduction rate of $TiO_2$ was reduced to 99% in the second continuous carbo-chlorination process.

키워드

CJGSB2_2019_v25n2_107_f0001.png 이미지

Figure 1. Schematic illustration of 2 stage fluidized bed Chlorination reactors.

CJGSB2_2019_v25n2_107_f0002.png 이미지

Figure 2. Shrinking core model description for chlorination of Ilmenite.

CJGSB2_2019_v25n2_107_f0003.png 이미지

Figure 3. Weight reduction rate of ilmenite Carbo-Chlorination.

CJGSB2_2019_v25n2_107_f0004.png 이미지

Figure 4. Chlorination degree vs. time with particle size variation.

CJGSB2_2019_v25n2_107_f0005.png 이미지

Figure 5. Chlorination degree vs. time with variation of temperature.

CJGSB2_2019_v25n2_107_f0006.png 이미지

Figure 6. FeO and TiO2 mass fraction vs. time with temperature variation.

CJGSB2_2019_v25n2_107_f0007.png 이미지

Figure 7. Weight reduction and mass fraction of TiO2 and FeO in the 1st stage ilmenite selective chlorination at 800 ℃.

CJGSB2_2019_v25n2_107_f0008.png 이미지

Figure 8. Chlorination degree and mass fraction of TiO2 in the 2nd stage rutile carbo-Chlorination at 1000 ℃.

CJGSB2_2019_v25n2_107_f0009.png 이미지

Figure 9. Weight reduction and mass fraction of TiO2 and FeO in the 1st and 2nd stage ilmenite chlorination.

Table 1. Comparison of weight reduction rate in experiment and calculation for Ilmenite carbon-Chlorination fluidized bed reaction

CJGSB2_2019_v25n2_107_t0001.png 이미지

참고문헌

  1. Harris, H. M., Henderson, A. W., and Cambel, T. T., "Fluidized Coke Bed Chlorination of Ilmenite," Report, Bureau of mine, USA (1976).
  2. Chughtai, A. R., Harris, H. M., and Riter, J. R., "High-Temperature Heterogeneous Equilibria in the Unit Activity Approximation: II1. The Chlorination of Idealized Ilmenite in the Presence of Excess Carbon," Metallurgical Transactions B 8(2), 507-509 (1977). https://doi.org/10.1007/BF02696938
  3. Neurgaonkar, V. G., Gokarn, A. N., and Joseph, K., "Beneficiation of Ilmenite to Rutile by Selective Chlorination in a Fluidised Bed," J. Chem. Tech. Biotechnol., 36, 27-30 (1986). https://doi.org/10.1002/jctb.280360105
  4. Luckos, A., and den Hoed, P., "Fluidization and Flow Regimes of Titaniferous Solids," Ind. Eng. Chem. Res., 43, 5645-5652 (2004). https://doi.org/10.1021/ie030776j
  5. Moodley, S., Eric, R. H., Kucukkaragoz, C., and Kale, A., "Chlorination of Titania feedstocks," Ind. Eng. Chem. Res., 43, 5645-5652 (2004). https://doi.org/10.1021/ie030776j
  6. Fouga, G. G., Pasquevich, D. M., and Bohe, A. E., "The Kinetics and Mechanism of Selective Iron Chlorination of an Ilmenite Ore" Mineral Processing and Extractive Metallurgy (Trans. Inst. min. Metall. C), 116(4), 230-238 (2007).
  7. Sohn, H. Y., and Zhou, L., "The Chlorination Kinetics of Beneficiated Ilmenite Particles by CO+Cl2 Mixtures," Chemical Engineering Journal, 72, 37-42 (1999). https://doi.org/10.1016/S1385-8947(98)00139-9
  8. Rhee, K. I., and Sohn, H. Y., "The Selective Chlorination of Iron from Ilmenite Ore by C0-CI2 Mixtures: Part I. Intrinsic Kinetics," Metallurgical Transactions B, 21(2), 321-330 (1990). https://doi.org/10.1007/BF02664200
  9. Niu, L. P, Zhang, T. A., Ni, P. Y., and Ouyang, K., "Fluidized-Bed Chlorination Thermodynamics and Kinetics of Kenya Natural Rutile ore," Trans. Nonferrous Met. Soc. China, 23(11), 3448-3455 (2013). https://doi.org/10.1016/S1003-6326(13)62887-3
  10. Morris, A. J., and Jensen, F., "Fluidized Bed Chlorination Rates of Australian Rutile," Metallurgical Transactions B, 7(1), 89-93 (1976). https://doi.org/10.1007/BF02652823
  11. Hahn, Y. B., and Chang, K. S., "Mathematical Modeling of the Reduction Process of Iron Ore Particles in Two Stages of Twin-Fluidized Beds Connected in Series," Metallurgical Transactions B, 29(5), 1107-1114 (1998). https://doi.org/10.1007/s11663-998-0080-4
  12. Kunii, D., Levenspiel, O.: in Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, MA, pp. 337-56 (1991).
  13. Homma, S., Ogat, S., Koga, J., and Matsumoto, S., "Gas-Solid Reaction Model for a Shrinking Spherical Particle with Unreacted Shrinking Core", Chemical Engineering Science, 60, 4971-4980 (2005). https://doi.org/10.1016/j.ces.2005.03.057
  14. Jung, E. J., RIST (Research Institute of Industrial Science & Technology, Metallic Material Research Group, Pohang, Korea, personal communication, Jun (2018).
  15. Van Deventer, J. S. J., "Kinetics of Selective Chlorination of Ilmenite", Thermochimica Acta, 124, 205-215 (1988). https://doi.org/10.1016/0040-6031(88)87023-0
  16. Fouga et al., "The Kinetics and Mechanism of Selective Iron Chlorination of an Ilmenite Ore", Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metal. C), 116(4), 230-238 (2007).