• Title/Summary/Keyword: precision of solution

Search Result 725, Processing Time 0.032 seconds

A Study on Corrosion Fatigye Crack Propagation Behaviors due to a Single Overload (단일과대하중하의 부식피로균열진전거동에 관한 연구)

  • 강동명;이하성;우창기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.481-485
    • /
    • 1997
  • 6063-T5 alloys are tested in laboratory air, water and 3% NaCl solution to investigate the effects of corrosive environment on the retardation behavior through single overload fatigue test. Also, the fatigue crack propagation and the crack closure behavior are studied. The results obtained in this experimental study are summarized as follows: 1) Behaviors of fatigue crack growth retardation are observed in water and 3% NaCl solution as they do in air. The number of delay cycles and the size of affected region by single overload decrease greatly in water and 3% NaCl compared with those in air. 2) In fractographic results, the overload marking by single overload appear remarkably in air, but indistinctly in water and 3% NaCl solution. 3) The effect of crack closure on crack propagation is most remarkable in the beginning of crack propagation. With crack propagation, the crack closure level and its effect decrease greatly.

  • PDF

High Precision Path Generation of an LCD Glass-Handling Robot

  • Cho, Phil-Joo;Kim, Hyo-Gyu;Kim, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2311-2318
    • /
    • 2005
  • Progress in the LCD industries has been very rapid. Therefore, their manufacturing lines require larger LCD glass-handling robots and more precise path control of the robots. In this paper, we present two practical advanced algorithms for high-precision path generation of an LCD glass-handling robot. One is high-precision path interpolation for continuous motion, which connects several single motions and is a reliable solution for a short robot cycle time. We demonstrate that the proposed algorithm can reduce path error by approximately 91% compared with existing algorithms without increasing cycle time. The second is real-time static deflection compensation, which can optimally compensate the static deflection of the handling robot without any additional sensors, measurement instruments or mechanical axes. This reduces vertical path error to approximately 60% of the existing system error. All of these algorithms have been commercialized and applied to a seventh-generation LCD glass-handling robot.

  • PDF

The Effect of Surface Roughness on the Contact Fatigue Life (표면 거칠기가 접촉피로 수명에 미치는 영향)

  • Chu Hyo-Jun;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1033-1036
    • /
    • 2005
  • The effect of surface roughness on the contact fatigue was investigated in this study. To accomplish this goal, contact analysis based on the influence functions and the rectangular patch solution was performed to obtain the subsurface stress. Mesoscopic multiaxial fatigue criterion is then applied to predict fatigue damage. Suitable counting method and damage rule were used to evaluate the fatigue life of random loading caused by rough surface. As a result of the analysis, relationship between the life and roughness as well as the creack initiation depth was revealed. Below the critical roughness, It is observed that the fatigue life has hardly changed and creack is initiated around the depth at which the maximum shear stress occurs. Different behavior, however, is observed in case that the roughness is above the critical value.

  • PDF

Conceptual Design of Cutting System by Qualitative Reaoning (정성 추론에 의한 절삭 시스넴의 개념 설계)

  • 김성근;최영석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.531-535
    • /
    • 1996
  • Computer aided conceptual solution of engineering problems can be effectively implemented by qualitative reasoning based on a physical model. Qualitative reasoning needs modeling paradigm which provides intellignet control of modeling assumptions and robust inferences without quantitative information about the system. We developed reasoning method using new algebra of qualitative mathematics. The method is applied to a conceptual design scheme of anadaptive control system of cutting process. The method identifies differences between proportional and proportional-integral control scheme of cutting process. It is shown that unfeasible investment could be prevented in the early conceptual stage by the qualitative reasoning procedures proposed in this paper.

  • PDF

Elastokinematic Analysis for Calculating Suspension Design Parameters (현가계 설계인자 계산을 위한 탄성기구학 해석)

  • 강주석;윤중락;배상우;이장무;탁태오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.887-890
    • /
    • 1996
  • In this study, based on the assumption that the displacements of suspension systems under the external forces are very small, a linear form of elastokinametic equations in terms of infinitesimal displacements and joint reaction forces are derived. The equations can be applied to any form of suspensions once the type of kinematic joints and bushings are identified. The validity of the method is proved through the comparison of the results from the more complex solution offered by ADAMS

  • PDF

Inverse Compensation of Hysteresis in Ferromagnetic Materials (강자성체의 히스테리시스 역 보상 모델)

  • 박영우;한광섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1470-1474
    • /
    • 2004
  • This paper addresses the development of inverse compensation techniques for a class of ferromagnetic transducers including magnetostrictive actuators. In this work, hysteresis is modeled through the domain wall theory originally proposed by Jiles and Atherton[1]. This model is based on the quantification of the energy required to translate domain walls pinned at inclusions in the material with the magnetization at a given field level specified through the solution of an ordinary differential equation. A complementary differential equation is then employed to compute the inverse which can be used to compensate for hysteresis and nonlinear dynamics in control design.

  • PDF

Fabrication Technique of Nano/Micro Pattern with Concave and Convex Structures on the Borosilicate Surface by Using Nanoscratch and HF etching (나노스크래치와 HF 식각을 병용한 보로실리케이트 요/철형 구조체 패턴 제작 기술)

  • 윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.24-31
    • /
    • 2004
  • The objective of this work is to suggest a mastless pattern fabrication technique using the combination of machining by Nanoindenter(equation omitted) XP and HF wet etching. Sample line patterns were machined on a borosilicate surface by constant load scratch (CLS) of the Nanoindenter(equation omitted) XP with a Berkovich diamond tip, and they were etched in HF solution to investigate chemical characteristics of the machined borosilicate surface. All morphological data of scratch traces were scanned using atomic force microscope (AFM).

A Development of Task-oriented Programming System for the Application of Robot (로봇 응용을 위한 공정 지향적인 프로그래밍 시스템 개발)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.34-42
    • /
    • 1996
  • Robot programming has been discussed in detail during the recent years. Numerous studies in particular presented relevance, solution concepts and implementation of off-line programming. In this paper a new user-friendly robot programming method is introduced, which permits the implicit description and programming of assembly process. On the functional level of programming, the assembly processes are described in terms of their operational functions. On the language level, the individual functions are then translated into commands for the robots.

  • PDF

공정계획 전문가시스템의 개발-조선 블럭분할에의 응용

  • 박병태;이재원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.370-374
    • /
    • 1993
  • This paper describes a study on the expert system based process planning of the block division process in shipbuilding. The prototype system developed deterines the block division line of the midship of crude-oil tanker. Case-based reasoning (CBR) approach relying on previous similar cases to solve the problem is applied instead of rule-based reasoning (RBR). Similar cases are retrieved from case base according to the similarity metrics between input problem and cases. The retrieved case with the highest priority is then adapted to fit to the input problem buy adaptation rules. The adapted solution is proposed as the division line for the input problem.