• 제목/요약/키워드: precision of measurement

검색결과 2,626건 처리시간 0.033초

정밀가공 부품 검사에 사용되는 삼차원측정기의 측정불확도 연구 (A Study on Measurement Uncertainty of CMM used for Inspection of Precision Machined parts.)

  • 이갑조;오상록;김종관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.3-9
    • /
    • 2004
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time. it is necessary not only precision machine or machining technique but also the measurement technique is very important. So. the improvement of precise measurement technique is to be joined together at once with improvement of product technique. Finally. he quality and value of the parts are decided by precision measurement. This paper aims to study on he measurement uncertainty when the machined parts are inspected with 3-dimensional coordinate measuring machine. The objectives are to remove an error of measurement and to improve quality and productivity of the mass products.

  • PDF

PTR의 붓스트랩 신뢰구간 (Bootstrap Confidence Intervals of Precision-to-Tolerance Ratio)

  • 장무성;김상부
    • 산업경영시스템학회지
    • /
    • 제30권2호
    • /
    • pp.37-43
    • /
    • 2007
  • ANOVA is widely used for measurement system analysis. It assumes that the measurement error is normally distributed, which may not be seen in certain industrial cases. In this study, the exact and bootstrap confidence intervals for precision-to-tolerance ratio (PTR) are obtained for the cases where the measurement errors are normally and non-normally distributed and the reproducibility variation can be ignored. Lognormal and gamma distributions are considered for non-normal measurement errors. It is assumed that the quality characteristics have the same distributions of the measurement errors. Three different bootstrap methods of SB (Standard Bootstrap), PB (Percentile Bootstrap), and BCPB (Biased-Corrected Percentile Bootstrap) are used to obtain bootstrap confidence intervals for PTR. Based on a coverage proportion of PTR, a comparative study of exact and bootstrap methods is performed. Simulation results show that, for non-normal measurement error cases, the bootstrap methods of SB and BCPB are superior to the exact one.

보정 가공을 통한 초정밀 원통 가공에 대한 연구 (The Study of the Fabrication of the Ultra-Precision Cylinder by the Compensation Process)

  • 이정철
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.122-128
    • /
    • 2013
  • This paper describes the on-machine surface form evaluation of an ultra-precision cylinder for the fabrication by the compensation process. In this study, the surface form error of an ultra-precision cylinder, which was fabricated by the ultra-precision diamond turning machine with a single diamond cutting tool, was evaluated by using two capacitance-type displacement probes. Based on the measurement results, the compensation process was conducted. Since the measurement was carried out on the machine without re-mounting of the workpiece, additional fabrication for compensation process can be conducted precisely.

레이저를 이용한 볼나사 리드오차 측정에 관한 연구

  • 윤영식;박철우;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.254-259
    • /
    • 1994
  • Recently, the precision ball screw becomes the essence of the high-precision industries and is playing a key role in the positioning devices. The standard and definition of pitch error in a precision ball screw is specified by KS, JIS or ISO. However, the method of measuring the pitch error is not concrete. In this study. laser measurement system(LMS) with a laser position transducer and a machine-tools is developed. In order to verify the stability of the LMS, several experiments with the standard ball screw is performed.

  • PDF

오염토양의 효율적 조사기법과 측정불확도의 평가방법 (Cost-effective Investigation on Contaminated Land and Assessment of Measurement Uncertainty)

  • 이종천
    • 자원환경지질
    • /
    • 제37권1호
    • /
    • pp.49-59
    • /
    • 2004
  • The concectration and distribution of contaminants obtained from a contaminated land investigation or an environmental geochemistry survey constitutes the basis of a decision-making process on environmental policies or of scientific researches. As the quality of data determines the reliability of the result, the investigation plan should be adjusted according to the purpose of the investigation. In general, the effort to improve the data quality had been focused mainly on the QA/QC procedures in laboratories. The rapid progress of analytical instrument has also contributed toward improving the analytical precision to a sacrificable degree. Nevertheless, in many cases, it is not the analytical precision that needs improvement for the better precision of overall measurement process: it is rather during the sampling process in the field that is responsible for the poor precision. To assess the data quality on a measured value, ISO recommends to provide information on "measurement uncertainty" along with the measured value. The measurement uncertainty in an environmental measurement context can be explained as the statistical number that expresses the degree of the uncertainty stemming from the sampling and analytical procedures. There is a cost involved in order to improve the precision of sampling and analytical methods so as to decrease the degree of measurement uncertainty. The economical point of compromise in an investigation planning can be achieved when the allowable degree of uncertainty has been set before-hand. The investigation can then be planned accordingly not to exceed the uncertainty limit. Furthermore, if the measurement uncertainty estimated from the preliminary investigation can be separated into sampling and analytical uncertainties, it can be used as a criterion where the resources for the investigation should be allotted cost-effectively to reinforce the weakest link of the whole investigation process. This paper aims to present a method of estimating the level of measurement uncertainty of a measured contamination concentration at a site used as an example and to show how the estimated uncertainty can be applied to serve the particular purpose of an investigation.

뇌파신호 측정을 위한 고정밀 전치 증폭기의 설계 (The Design of High Precision Pre-amplifier for EEG Signal Measurement)

  • 유선국;김남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권3호
    • /
    • pp.301-308
    • /
    • 1995
  • A high-precision pre-amplifier is designed for general use in EEG measurement system. It consists of signal generator, signal amplifier with a impedance converter, shield driver, body driver, differential amplifier, and isolation amplifier. The combination of minimum use of inaccurate passive components and the appropriate matching of each monolithic amplifiers results in good noise behavior, low leakage current, high CMRR, high input impedance, and high IMRR. The performance of EEG pre-amplifier has been verified by showing the typical EEG pattevn of a nomad person through the clinical experiments.

  • PDF

Burr의 In-process 계측에 관한 연구 (A Study on the In-process measurement of Burrs)

  • 박동삼
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.242-246
    • /
    • 1996
  • Accurate measurements of burr profile and burr size are very important for the automation of deburring. In this paper, a new burr measurement system using capacitance sensor is proposed. Ultra precision milling machine was used as a sensor positioning system. The possibility and limitation of employing a capacitance sensor to defect burrs are also investigated. The proposed system is proven to be relatively accurate, easy to setup and lower cost. This system will be applicable to a fully automated deburring system with minor modifications.

  • PDF