• 제목/요약/키워드: precise image

검색결과 693건 처리시간 0.027초

정밀부품의 비접촉 자동검사기술 개발 (Development of Non-Contacting Automatic Inspection Technology of Precise Parts)

  • 이우송;한성현
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.

네트워크기반 로봇 축구 시스템 (Network Based Robot Soccer System)

  • 조동권;정상봉;성영휘
    • 대한임베디드공학회논문지
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 2009
  • In this paper, a network based robot soccer system is proposed. The system consists of robots, an image processing sub-system, a game server, and client systems. Embedded technique is applied to the hardware and software for controlling the robots and image processing. In this robot soccer system, a gamer can see and control robots in a remote site through Internet. During the game, the game server gives geometrical information on robots such as positions and orientations. We demonstrated the game in public and obtained optimistic results even though some technical problemssuch as communication delay and precise control for the robots should be improved.

  • PDF

A HIGH PRECISION CAMERA OPERATING PARAMETER MEASUREMENT SYSTEM AND ITS APPLICATION TO IMAGE MOTION INFERRING

  • Wentao-Zheng;Yoshiaki-Shishikui;Yasuaki-Kanatsugu;Yutaka-Tanaka
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 KOBA 방송기술 워크샵 KOBA Broadcasting Technology Workshop
    • /
    • pp.77-82
    • /
    • 1999
  • Information about camera operating such as zoom, focus, pan, tilt and tracking is useful not only for efficient video coding, but also for content-based video representation. A camera operating parameter measurement system designed specifically for these applications is therefore developed. This system, implemented in real time and synchronized with the video signal, measures the precise camera operating parameters. We calibrated the camera lens using a camera model that accounts for redial lens distortion. The system is then applied to infer image motion from pan and tilt operating parameters. The experimental results show that the inferred motion coincides with the actual motion very well, with an error of less than 0.5 pixel even for large motion up to 80 pixels.

Extraction of Ground Control Point (GCP) from SAR Image

  • Hong, S.H.;Lee, S.K.;Won, J.S.;Jung, H.S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1058-1060
    • /
    • 2003
  • A ground control point (GCP) is a point on the surface of Earth where image coord inates and map coordinates can be identified. The GCP is useful for the geometric correction of systematic and unsystematic errors usually contained in a remotely sensed data. Especially in case of synthetic aperture radar (SAR) data, it has serious geometric distortions caused by inherent side looking geometry. In addition, SAR images are usually severely corrupted by speckle noises so that it is difficult to identify ground control points. We developed a ground point extraction algorithm that has an improved capability. An application of radargrammetry to Daejon area in Korea was studied to acquire the geometric information. For the ground control point extraction algorithm, an ERS SAR data with precise Delft orbit information and rough digital elevation model (DEM) were used. We analyze the accuracy of the results from our algorithm by using digital map and GPS survey data.

  • PDF

Stereoscopic PTV 기법의 개발과 성능비교 연구 (Development of Stereoscopic PTV Technique and Performance Tests)

  • 이상준;윤전환
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.215-221
    • /
    • 2006
  • A stereoscopic particle tracking velocimetry (SPTV) technique based on the 2-frame hybrid particle tracking velocimetry (PTV) method was developed. The expansion of 2D PTV to SPTV is facilitated by the fact that the PTV method tracks individual particle centroids. To evaluate the performance and measurement accuracy of the present SPTV technique, it was applied to flow images of rigid body translation and synthetic standard images of jet shear flow and impinging jet flow. The data processing routine and measurement uncertainty of the SPTV technique are compared with those of conventional stereoscopic particle image velecimet.y (SPBV). In addition, the centroid translation effect of 2D particle image velocimetry (PIV) is defined and its effect on SPIV measurements is discussed. Compared to the SPIV method, the SPTV technique has inherited merits of concise and precise velocity evaluation procedures and provides better spatial resolution and measurement accuracy.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

DGPS RTK와 서라운드 영상을 융합한 GIS 기반 스마트 관로정보 관리시스템 설계 (Design of a GIS-based Smart Pipeline Information Management System Combining DGPS RTK and Surround View)

  • 국중진
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.125-129
    • /
    • 2023
  • In this paper, we propose a method to design and implement a smart pipeline information management system that can provide visualization information linked to GIS and roadmap based on the construction of precise pipeline buried information. The smart pipeline information management system consists of a positioning device for high-precision pipeline location measurement and surround view image data recording, a database for data storage and management, and a mobile app for remote monitoring and management. It connects surrounding image data and location data with GIS and roadmap. Convenience and accessibility of management can be improved.

  • PDF

RADARSAT 위성의 궤도결정과 자세결정을 이용한 SAR 영상의 자리매김 (GEOCODING OF SAR IMAGE USING THE ORBIT AND ATTITUDE DETERMINATION OF RADARSAT)

  • 소진욱;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.183-196
    • /
    • 1998
  • SAR(Synthetic Aperture Radar) 영상과 수치지형표고모형(DEM: Digital Elevation Model)을 이용하여 3차원 입체영상지도를 만드는 과정이 소개된다. 영상좌표와 DEM의 지리적 좌표 계를 이어주기 위해서는 그 연결고리로써 위성의 궤도결정과 자세결정의 방법을 이용하여 영상신호 취득 기하를 정밀하게 모형 화하는 작업이 요구된다. 이를 위해 사례연구 대상으로 삼은 RADARSAT의 궤도결정과 자세결정을 수행하였다. 궤도결정을 위해서는 영상신호 취득 시 관측된 영도 플러(zero Doppler) 경사거리를 이용하며, 자세결정을 위해서는 도플러 중심주파수(Doppler centriod)를 이용한다. 엄밀한 영상신호 취득기하를 확립함으로써 위성중심의 정밀한 영상 자리 매김 과정이 소개된다. 기존의 영상자리 매김이 순방향(영상좌표 계에서 지리적 좌표 계)으로 이루어진 것과는 반대로 영상 내에 지형 보정을 동시에 실시하기 위해서 DEM을 이용하여 역 방향(지리적 좌표 계에서 영상좌표 계)으로 수행하였다. 위성과 지상목표물간의 운동은 지구중심 관성좌표 계에서 기술된다.

  • PDF

The Identification of Japanese Black Cattle by Their Faces

  • Kim, Hyeon T.;Ikeda, Y.;Choi, Hong L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권6호
    • /
    • pp.868-872
    • /
    • 2005
  • Individual management of the animal is the first step towards reaching the goal of precision livestock farming that aids animal welfare. Accurate recognition of each individual animal is important for precise management. Electronic identification of cattle, usually referred to as RFID (Radio Frequency Identification), has many advantages for farm management. In practice, however, RFID implementations can cause several problems. Reading speed and distance must be optimized for specific applications. Image processing is more effective than RFID for the development of precision farming system in livestock. Therefore, the aim of this paper is to attempt the identification of cattle by using image processing. The majority of the research on the identification of cattle by using image processing has been for the black-and-white patterns of the Holstein. But, native Japanese and Korean cattle do not have a consistent pattern on the body, so that identification by pattern is impossible. This research aims to identify to Japanese black cattle, which does not have a black-white pattern on the body, by using image processing and a neural network algorithm. 12 Japanese black cattle were tested. Values of input parameter were calculated by using the face image values of 12 cows. The face was identified by the associate neural memory algorithm, and the algorithm was verified by the transformed face image, for example, of brightness, distortion, noise and angle. As a result, there was difference due to a transformation ratio of the brightness, distortion, noise, and angle. The algorithm could identify 100% in the range from -30 to +30 degrees of brightness, -20 to +40 degrees of distortion, 0 to 60% of noise and -20 to +30 degree of angle transformed images.