• 제목/요약/키워드: precipitation distribution

검색결과 783건 처리시간 0.024초

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • 응용통계연구
    • /
    • 제22권6호
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

북반구의 너도밤나무와 너도밤나무림의 분포에 관하여 (On the Distribution of Beech(Fagus, Fagaceae) and Beech-Dominated Forests in the Northern Hemisphere)

  • Yim, Yang-Jai
    • The Korean Journal of Ecology
    • /
    • 제6권3호
    • /
    • pp.153-166
    • /
    • 1983
  • The distribution of beech species (Fagus) and beech-dominated forests along climatic gradients in the Northern Hemisphere was studied by use of taxonomic and ecological literature. The genus Fagus as a whole occurs over the range of 4.5 to 20.0。C mean annual temperature and 600 to 1000 mm in lower limit, mean annual precipitation. At the higher end of the temperature range, beech occurs in zones with relatively high growing-season precipitation. Edaphically, beech species and beech-dominated forests tend to occur on mesic, moderately fertile sites. Beech-dominated forests occur in a limited portion of the climatic range of the genus with sensitive responses to other environmental factors. The distributional range of beech-dominated forests on a global scale depends more on climatic factors and geological events than on soil conditions or other factors, summarizing the facts obtained by many researchers on beech dominated forests.

  • PDF

집진효율 향상을 위한 미세 에어로졸 입자의 응축에 의한 성장 연구 (Condensational Growth of Fine Aerosol Particles to Increase Precipitation Efficiency)

  • 한상우;황정호
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1069-1076
    • /
    • 2000
  • As the environmental problems grow, the regulation of the pollutants emitted from power plants increases. Most of the pollutants in particle phase are removed by particle removal facilities, but fine particles between 0.1 micron and I micron in diameter have a low removal efficiency compared to particles in other size ranges. Therefore the present concern has concentrated on the removal of those fine particles. The purpose of this study is to grow fine particles by condensation to the range larger than I micron. Theoretically the general dynamic equation is solved with an assumption that the particle size follows a log-normal distribution to calculate the temporal behavior of the size distribution. Experiments have been carried out to compare the results with the theoretical predictions. Particles grown by condensation are sampled by impactors and observed with SEM photographs.

수자원 분포의 시공간적 변동 (Temporal Variation and Spatial Distribution of Water Resources)

  • 김성준
    • 한국농림기상학회지
    • /
    • 제4권3호
    • /
    • pp.175-196
    • /
    • 2002
  • The increase of meteorological uncertainty and unstable fluctuation of its behavior due to the global warming affect the temporal variation and spatial distribution of water resources and water use patterns in agriculture. There have been steady efforts to understand hydrological components and deal with such water related problems. This paper reviews firstly, the future effect of water resources due to climate changes, secondly, recent progress for precipitation, evapotranspiration, soil moisture, and thirdly, GIS/RS based integrated information systems conducted by both researchers and government ministries. There should be continuous studies and investments to cope with climate changes, and to accomplish sustainable development with the help of agricultural water resources. Some research topics were suggested to attempt with substantial contents considering our present capability and situation.

Prediction of sharp change of particulate matter in Seoul via quantile mapping

  • Jeongeun Lee;Seoncheol Park
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.259-272
    • /
    • 2023
  • In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10) using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estimation, we use the extreme value mixture model, which is a combination of conventional probability distributions and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model (QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differences. Real data analysis shows that the proposed method could give a more accurate prediction when there are sharp changes in PM10 in Seoul.

RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측 (Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios)

  • 구경아;김재욱;공우석;정휘철;김근한
    • 한국환경복원기술학회지
    • /
    • 제19권6호
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

Changes in Aporia crataegi's potential habitats in accordance with climate changes in the northeast Asia

  • Kim, Tae Geun;Han, Yong-Gu;Kwon, Ohseok;Cho, Youngho
    • Journal of Ecology and Environment
    • /
    • 제38권1호
    • /
    • pp.15-23
    • /
    • 2015
  • This study was conducted in an effort to provide important clues pertaining to the conservation and restoration of Aporia crataegi by identifying the spatial distribution characteristics of the current habitats, prospective habitats, and future habitats of A. crataegi in accordance with climate changes. To determine the distribution of A. crataegi, data from a total of 36 collecting points throughout South Korea, North Korea, China, Japan, Mongolia, and Russia are used. The spatial distributions of the data were examined through MaxEnt modeling. The distribution probability rates exceeded 75% at 18 locations among the 36 species occurrence locations, with Gangwon province showing the highest distribution probability in South Korea. The precision of the MaxEnt model was remarkably high, with an AUC value of 0.982. The variables that affect the potential distribution of A. crataegi by more than 10% are the degree of temperature seasonality, the amount of precipitation in the warmest quarter, the annual mean temperature, and the amount of precipitation in the driest month, in that order of importance. It was found that the future potential distribution area of A. crataegi continuously moves northward over time up to 2070s. In addition, the area of the potential distribution showing a habitable probability rate that exceeds 75% in northeast Asia was $28,492km^2$, where the area of potential distribution in the north part of Korean peninsula was $20.404km^2$ in size. Thus, it is anticipated that the most important future habitats of A. crataegi in the northeast Asia will be North and South Hamgyeong provinces and Ryanggang province near Mt. Baekdoosan in the northern area of the Korean peninsula.

2012년 겨울철 특별관측자료를 이용한 강수현상 시 대기 연직구조와 민감도 실험 (Vertical Atmospheric Structure and Sensitivity Experiments of Precipitation Events Using Winter Intensive Observation Data in 2012)

  • 이상민;심재관;황윤정;김연희;하종철;이용희;정관영
    • 대기
    • /
    • 제23권2호
    • /
    • pp.187-204
    • /
    • 2013
  • This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.

무강수일수와 강우효과를 고려한 개선된 표준강수지수 개발 (Development of a Modified Standardized Precipitation Index by Considering Effects of the Dry Period and Rainfall)

  • 이준원;김광섭
    • 한국수자원학회논문집
    • /
    • 제45권4호
    • /
    • pp.409-418
    • /
    • 2012
  • 본 연구에서는 가뭄의 심도에 직접적으로 영향을 주는 무강수일수를 고려하고, 강수에서 기인하는 지표면유출 효과를 반영한 가뭄해갈에 유효한 강수를 산정하여 기존의 SPI3을 개선한 Modified SPI를 제시하였다. 1973년부터 2009년까지 각종 보고서 및 문헌자료를 통해 실제 발생한 가뭄사례를 수집하여 행정구역별 가뭄공간정보를 생산하고, 동일기간 전국 69개지점에서산정된 가뭄지수를 우리나라 전체 공간으로표현하여각종 지수의 적합성을 평가하기 위하여ROC 분석을 수행하였다. 개선된 가뭄지수 제시를 위하여 총 강우량 중단기적인 유출에 기여할 것으로 판단되는 부분을 절삭하여 유효강우를 산정하였으며, 월단위의 무강수일수를 십분위, 누적분포함수로 변형하여 기존의 지수에 가중치를 부여하였다. 분석결과 유출량을 고려한 강우의 절삭은 기존의 SPI3에 비하여 상대적으로 높은 가뭄감지능력을 보여주었으며, 무강수일수를 고려한 가뭄지수의 개선은 누적분포함수의 수치를 고려함으로서 상당히 개선된 가뭄감지 능력을 보여주었다.

가뭄빈도해석을 통한 가뭄심도-지속시간-생기빈도 곡선의 유도 (Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis)

  • 이주헌;김창주
    • 한국수자원학회논문집
    • /
    • 제44권11호
    • /
    • pp.889-902
    • /
    • 2011
  • 본 연구에서는 한반도에서 발생했던 과거 가뭄사상의 정량적 평가를 위한 가뭄심도-지속기간-생기빈도(Severity-Duration-Frequency, SDF) 곡선을 유도하기 위해서 가뭄지수를 이용한 빈도해석을 실시하였다. 분석지점으로는 4대강 유역을 중심으로 하는 기상청 산하의 서울, 대전, 대구, 광주, 부산관측소를 선정하였으며 강수자료는 1974~2010년(37년)의 강수 자료를 이용하였다. 가뭄빈도해석에는 기상학적 가뭄지수인 SPI (Standardized Precipitation Index)를 선정하였으며 확률분포형에 대한 적합도 검정에서는 일반극치분포(GEV, Generalized Extreme Value)가 최적의 확률분포형으로 선정되었다. 가뭄지수의 빈도해석 통하여 유도된 주요 관측소별 SDF (Severity-Duration-Frequency) 곡선을 이용하여 과거의 주요 가뭄사상에 대한 재현기간을 제시하였으며 1994~1995년 가뭄의 경우 남부지방을 중심으로 하는 극심한 가뭄으로서 광주관측소에서는 50~100년, 부산관측소에서는 100~200년의 높은 재현기간을 나타내었다. 그밖에 1988~1989년 가뭄의 경우 서울관측소에서는 300년의 재현기간을 나타내었다.